1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
|
#+TITLE: Carbs Packaging Tools
#+SUBTITLE: User Manual
#+AUTHOR: Cem Keylan
#+EMAIL: cem@ckyln.com
#+TEXINFO_FILENAME: cpt.info
#+TEXINFO_DIR_CATEGORY: Development
#+TEXINFO_DIR_TITLE: Carbs Packaging Tools: (cpt)
#+TEXINFO_DIR_DESC: Carbs Package Management Library
#+OPTIONS: html-scripts:nil todo:nil
This is a reference document containing both the user-guide and the development
manual for *Carbs Packaging Tools*. For development logs see [[https://git.carbslinux.org/cpt][the git repository]].
* Copying
:PROPERTIES:
:COPYING: t
:END:
Copyright \copy 2020-2021 Cem Keylan
#+begin_quote
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in
the section entitled "GNU Free Documentation License."
#+end_quote
* Preface
:PROPERTIES:
:DESCRIPTION: Introduction to Carbs Packaging Tools
:END:
Carbs Linux uses its own package management toolchain named =cpt= which was
initially forked from the [[https://github.com/kisslinux/kiss][kiss]] package manager. Unlike =kiss=, however, its main
goal is being easily extendable. Instead of being a single file package manager,
it revolves around the shell library =cpt-lib=, and many tools that wrap around
it. This document aims to document both the usage of the distributed tools and
document the library functions.
* Usage
:PROPERTIES:
:DESCRIPTION: Basic usage of Carbs Packaging Tools
:END:
=cpt= is formed of many tools combined in a single environment, similar to
=git=. When you run =cpt= without any arguments, it will show all available
tools and their explanations. Here is an example call with extra scripts on my
system:
#+BEGIN_EXAMPLE
-> Carbs Packaging Tool
-> add Commit the current directory as a new package
-> alternatives List and swap to alternatives
-> build Build a package
-> bump Commit the current directory as a version bump
-> cargo-urlgen Create static cargo sources for Rust packages
-> cargolock-urlgen Convert the given Cargo.lock file to sources
-> cat Concatanate package files in the installed package database
-> changelog Print the git log of the specific package
-> chbuild Create/destroy temporary chroots
-> checkmissing Verify package manifests
-> checksum Generate checksums
-> chroot Enter a chroot
-> commit Commit a package without the prefix of 'package:'
-> depends Display a package's dependencies
-> download Download sources for the given package
-> exec Execute a command inside the alternatives system
-> export Turn an installed package into a CPT tarball
-> fork Fork a package to the current directory
-> getchoice Prints the full path to a file in the alternatives system.
-> install Install a package
-> link Link a forked package's files to the other repository
-> list List installed packages
-> maintainer Find the maintainer of a package
-> manifest Display all files owned by a package
-> manifest-tree Display all files owned by a package with a tree view
-> new Create a boilerplate CPT package
-> orphans List orphaned packages
-> owns Check which package owns a file
-> rel Bump the release number of a package
-> remove Remove a package
-> repodepends Display a package's dependencies in the repository
-> reporevdepends Display packages on the repository which depend on package
-> reset Remove all packages except for the base
-> revdepends Display packages which depend on package
-> search Search for a package
-> size Show the size on disk for a package
-> source Extract sources of a given package to the current directory
-> update Check for updates
#+END_EXAMPLE
The documentation of =cpt= aims to keep tool flags and related usage information
on concise manual pages, while moving the rest of the information to this User
Manual to avoid unwarranted duplication. To learn more on a specific usage of a
tool, use the ~man~ program:
#+begin_src sh
man cpt-build
#+end_src
* Configuration
:PROPERTIES:
:DESCRIPTION: Configuring the package manager
:END:
The package manager does *NOT* have a configuration file, but there are a
variety of ways in order to interact with and configure the package manager.
** CPT Base
:PROPERTIES:
:DESCRIPTION: Defining base packages
:END:
An =/etc/cpt-base= file can be used in order to define the base to the package
manager. Base packages are the packages that receive special treatment by
utilities such as =cpt-reset=, and =cpt-orphans=.
#+begin_example
# This file defines the base packages of the system. You can add or remove
# package names in order to redefine the base. This file will be used by
# cpt-orphans and cpt-reset. If this file doesn't exist on /etc/cpt-base, both
# of the tools will assume that there is no defined base, so use with caution.
baselayout
binutils
byacc
busybox
bzip2
ca-certificates
curl
flex
gcc
git
rsync
gzip
cpt
bearssl
linux-headers
m4
make
musl
pkgconf
xz
zlib
#+end_example
** Environment Variables
:PROPERTIES:
:DESCRIPTION: Change the behaviour of cpt through environment configuration
:END:
Since there is no configuration file for =cpt=, the package manager is
configured through environment variables. These can be set per operation, or be
set to your shell configuration or =~/.profile=. Here are the environment
variables that alter the behaviour of =cpt=, some of them have separate sections
to provide detailed information.
- ~CPT_PATH~ ::
Set the locations of your repositories. It is similar to the ~PATH~ variable.
- ~CPT_CACHE~ ::
The cache directory for =cpt=. Default: ~$XDG_CACHE_HOME/cpt~.
- ~CPT_CHOICE~ ::
If this is set to 0, a package installation will be aborted on conflicts.
- ~CPT_COLOR~ ::
If this is set to 1, =cpt= tools will be forced to display coloured output. If
set to 0, they will be forced to display them without colours. Otherwise,
=cpt= will output colour as long as it is outputting to a terminal.
- ~CPT_DEBUG~ ::
If set to 1, temporary directories will not be removed after the operation.
- ~CPT_FETCH~ ::
If set to 0, ~cpt-update~ will not fetch repositories.
- ~CPT_FORCE~ ::
If set to 1, =cpt= tools will force operation.
- ~CPT_HOOK~ ::
Absolute path to the package manager hook file.
- ~CPT_KEEPLOG~ ::
If set to 1, =cpt= will keep logs regardless of operation success.
- ~CPT_PID~ ::
Set the temporary build directory name.
- ~CPT_PROMPT~ ::
If set to 0, =cpt= will not prompt you for anything.
- ~CPT_ROOT~ ::
If this variable is set, =cpt= will assume the given path as the system root.
- ~CPT_TEST~ ::
If set to 1, ~cpt-build~ will run tests whenever available.
- ~CPT_TMPDIR~ ::
The directory to create the temporary directories.
*** =CPT_PATH=
:PROPERTIES:
:DESCRIPTION: Set the locations of your repositories
:END:
Similar to the =PATH= variable, =cpt= find repositories from the =CPT_PATH=
variable. Here is an example:
#+begin_src sh
CPT_PATH=$HOME/repos/repo1:$HOME/repos/repo2:$HOME/repos/repo3
#+end_src
This is a simplistic and a structured example for repository locations, but it
doesn't necessarily need to be as tidy as the example above. Here is an example
for something a little more complex.
#+begin_src sh
CPT_PATH=$HOME/repos/overrides:/var/db/cpt/repo/core:/var/db/cpt/repo/extra:$HOME/repos/personal
#+end_src
This example brings us to the next section of this document.
**** Repository preferences
:PROPERTIES:
:DESCRIPTION: Prioritise package repositories
:END:
When you are using multiple repositories from multiple vendors, you will find
out that some repositories have the same packages. =cpt= doesn't care about
conflicting packages. If you want to build a package that exists on multiple
repositories, =cpt= will build the first matching package. This means that if
=grep= package (for the sake of an example) exists on both
=$HOME/repos/personal= and =$HOME/repos/carbs/extra=, and you want
to install from your personal repository, you must set =CPT_PATH= so that your
personal repository is listed before the =extra= repository.
#+begin_src sh
CPT_PATH=$HOME/repos/personal:$HOME/repos/carbs/extra
#+end_src
**** Setting the =CPT_PATH=
:PROPERTIES:
:DESCRIPTION: Set the value of CPT_PATH on your shell configuration
:END:
You can set the =CPT_PATH= variable on your shell configuration or your
=.profile= file in a way that is easy to read.
The below example sets =CPT_PATH= in a way that is easy to understand which
repository comes first:
#+begin_src sh
CPT_PATH=$HOME/repos/overrides
CPT_PATH=$CPT_PATH:$HOME/repos/carbs/core
CPT_PATH=$CPT_PATH:$HOME/repos/carbs/extra
CPT_PATH=$CPT_PATH:$HOME/repos/carbs/xorg
CPT_PATH=$CPT_PATH:$HOME/repos/personal
export CPT_PATH
#+end_src
*** =CPT_COMPRESS=
:PROPERTIES:
:DESCRIPTION: Compression tool to use in cpt
:END:
When setting the =CPT_COMPRESS= value, you should set the name of the default
suffixes for the program. Available values are:
- =gz=
- =zst=
- =bz2=
- =xz=
- =lz=
Defaults to =gz=.
*** =CPT_FORCE=
:PROPERTIES:
:DESCRIPTION: Force operations on cpt
:END:
If this is set to 1, some of the =cpt= tools will continue regardless of
errors or skip certain checks. Here are some examples:
- =cpt-install= will install a package without verifying its manifest.
- =cpt-install= will install a package even when there are missing dependencies.
- =cpt-remove= will remove packages even when there are other packages that
depend on the current package.
Defaults to 0.
*** =CPT_PID=
:PROPERTIES:
:DESCRIPTION: Set reproducible temporary directories
:END:
If this variable is set, the temporary files will be created with this variable
as the suffix, instead of the PID of the =cpt= process. The advantage is that
you can know exactly where the build directory is located, while the
disadvantage is that there will be issues with multiple operations at the same
time. So the best way to use this variable is during one-time =cpt= calls.
#+BEGIN_EXAMPLE
CPT_PID=mesa cpt b mesa
#+END_EXAMPLE
By running the above, you will know that the created build directories will end
with the =*-mesa= suffix.
** Hooks
:PROPERTIES:
:DESCRIPTION: Use hooks to customize the package manager operations
:END:
Hooks can be used in order to change the runtime behaviour of the package manager.
There are a variety of package hooks, mostly self explanatory:
- pre-build :: Run just before the ~build~ script is run
- post-build :: Run after the ~build~ script is run successfully
- build-fail :: Run if the ~build~ script fails
- pre-test :: Run before the ~test~ script is run
- test-fail :: Run if the ~test~ script fails
- pre-install :: Run before a package is installed for each package
- post-install :: Run after a package is installed for each package
- pre-remove :: Run before a package is removed for each package
- post-remove :: Run after a package is removed for each package
- pre-fetch :: Run before all repositories are fetched
- post-fetch :: Run after all repositories are fetched
- post-package :: Run after a tarball for a package is created
In order to use hooks, you will need to set the =CPT_HOOK= variable pointing to
your hook file. Your hook file *MUST* be a POSIX shell script as its contents
are sourced by the package manager.
The hook is given 3 variables when it is executed. Those are:
- ~$TYPE~ ::
The type of the hook, (=pre-build=, =post-build=, etc.)
- ~$PKG~ ::
The package that =cpt= is currently working on. Can be null.
- ~$DEST~ ::
The destination of the operation. Can be null.
** Editing the build file during pre-build
:PROPERTIES:
:DESCRIPTION: Modify a package build with your hooks
:END:
You can edit the =build= file during pre-build. The file is copied from the
repository to the build directory named as =.build.cpt=. You can use =sed= or
any other tool to edit the build file. After the build is complete, a =diff=
file will be placed to the package database named as =build.diff=. Here is an
example =build= file manipulation during the pre-build hook.
#+BEGIN_SRC sh
cat <<EOF> .build.cpt
#!/bin/sh -e
for patch in bash50-0??; do
patch -p0 < "\$patch"
done
export LDFLAGS=-static
./configure \
--prefix=/usr \
--without-bash-malloc \
--disable-nls
export MAKEFLAGS="TERMCAP_LIB=/usr/lib/libncursesw.a $MAKEFLAGS"
make
make DESTDIR="\$1" install
ln -s bash "\$1/usr/bin/sh"
EOF
#+END_SRC
* Packaging System
:PROPERTIES:
:DESCRIPTION: More detail on creating packages
:END:
A package is formed of several files, from these files, only ~build~,
~checksums~, and ~version~ files are mandatory.
This section talks about files that are interpreted specially by the package
manager. Any other file can be added to the package directory at the discretion
of the package maintainer. Everything in the package directory will also be
added to the package database that is located on =/var/db/cpt/installed=. These
can be patches, configuration files, etc.
** build
:PROPERTIES:
:DESCRIPTION: The build script
:END:
Typically =build= files are shell scripts that run commands to prepare the source
code to be installed on the target system. Even though we will be assuming that
the =build= file is a POSIX shell script (for portability's sake), =build=
files can be any executable program from binary programs to =perl= scripts.
The contents of a build script do not need to follow a certain rule for the
package manager, except for the fact that the user needs the permission to
execute the file.
An important advice is to append an '-e' to the shebang (#!/bin/sh -e) so that
the build script exits on compilation error.
Build is run with three arguments (=$#=)
- Location of the package directory (DESTDIR)
- Package version
- System architecture
** sources
:PROPERTIES:
:DESCRIPTION: The file containing package sources
:END:
=sources= file is a list of files and sources that will be put to the build
directory during the build process. Those can be remote sources (such as tarballs),
git repositories, and files that reside on the package directory.
The syntax is pretty simple for the =soures= file; =src dest=. The =dest=
parameter is optional. It is the directory that the source will be placed in.
Here is the =sources= file for the =gst-plugins= package:
#+BEGIN_EXAMPLE
https://gstreamer.freedesktop.org/src/gst-plugins-good/gst-plugins-good-1.16.2.tar.xz good
https://gstreamer.freedesktop.org/src/gst-plugins-bad/gst-plugins-bad-1.16.2.tar.xz bad
https://gstreamer.freedesktop.org/src/gst-plugins-ugly/gst-plugins-ugly-1.16.2.tar.xz ugly
https://gstreamer.freedesktop.org/src/gst-libav/gst-libav-1.16.2.tar.xz libav
#+END_EXAMPLE
This file is read from the package manager as space seperated. Files that begin
with a =#= comment are ignored. The first value points to the location of the
source.
If it starts with a protcol url, (such as ftp:// http:// https://) it will be
downloaded with =curl=.
If the source is a git repository, it shall be prefixed with a =git+= git(1) will
be used to do a shallow clone of the repository. If the commit is suffixed by a
history pointer, git will checkout the relevant revision. So,
- =git+git://example.com/pub/repo@v1.2.3= :: will checkout the tag named "v1.2.3"
- =git+git://example.com/pub/repo#development= :: will checkout the branch named "development"
- =git+git://example.com/pub/repo#1a314s87= :: will checkout the commit named "1a314s87"
Other files are assumed to be residing in the package directory. They should be
added with their paths relative to the package directory.
** checksums
:PROPERTIES:
:DESCRIPTION: The file containing sha256sum of the sources
:END:
=checksums= file is generated by the ~cpt c pkg~ command. It is generated
according to the order of the sources file. That's why you shouldn't be editing
it manually. The checksums file is created with the digests of the files using
the sha256 algorithm.
** version
:PROPERTIES:
:DESCRIPTION: The file containing the version and the release numbers of a package
:END:
The version file includes the version of the software and the release number of
of the package on a space seperated format. The contents of the file should look
like below.
#+BEGIN_EXAMPLE
1.3.2 1
#+END_EXAMPLE
** depends
:PROPERTIES:
:DESCRIPTION: The file containing the dependencies of a package
:END:
This is a list of dependencies that must be installed before a package build. You
can append "make" after a dependency to mark a package is only required during
the build process of a package. Packages marked as a make dependency can be
removed after the build. There are also "test" dependencies. These dependencies
are only installed if either the =CPT_TEST= is set to 1, or the build is run
with the =-t= or =--test= options. So, a package package could have
the following =depends= file:
#+BEGIN_EXAMPLE
linux-headers make
python test
zlib
#+END_EXAMPLE
** post-install
:PROPERTIES:
:DESCRIPTION: The post-installation script
:END:
=post-install= files have the same requirements as the build script. They
will be run after the package is installed as root (or as the user if the user
has write permissions on =CPT_ROOT=).
** message
:PROPERTIES:
:DESCRIPTION: The post-installation message to be displayed
:END:
This plaintext file will be outputted with =cat= after every package is
installed.
** test
:PROPERTIES:
:DESCRIPTION: The test script for a package
:END:
Test files are mainly for the repository maintainer to test the packages, and
will only run if the user has the =CPT_TEST= variable set, or the build is
run with the =-t= or =--test= options. This script is run on the
build directory. It is run right after the build script is finished.
* Rsync Repositories
:PROPERTIES:
:DESCRIPTION: Information on using or creating rsync repositories
:END:
Rsync repositories are simple to serve and simple to use. In the repository
directory, there needs to be a =.rsync= file that points to the remote of the
repository. This is used in order to fetch changes from the upstream. =.rsync=
file looks like this for the core repository:
#+BEGIN_EXAMPLE
rsync://carbslinux.org/repo/core
#+END_EXAMPLE
Rsync repositories have some few distinctions when it comes to fetching them.
They can be either synced individually or as a "root". There are 2 important
files, those are =.rsync= and =.rsync_root=. Here is the Carbs Linux
rsync repository structure.
#+BEGIN_EXAMPLE
/
-----------------
| |
.rsync core/
----------------
| |
.rsync .rsync_root
#+END_EXAMPLE
Unlike git repositories, they don't have a defined "root" directory. This is
both an advantage and a disadvantage. This way, we can sync individual
repositories, but that also means we need extra files to define root directories
and repository locations. Here is the content for each of these files:
#+BEGIN_EXAMPLE
/.rsync: rsync://carbslinux.org/repo
/core/.rsync: rsync://carbslinux.org/repo/core
/core/.rsync_root: ..
#+END_EXAMPLE
The =.rsync_root= file on the core repository points to the upper directory.
If a =.rsync= file exists on the upper directory, this means that is the whole
repository and will sync the entire repository instead of each individual repository.
If the upper directory doesn't have this =.rsync= file, this means that this
is an individual repository, and the package manager will fetch accordingly.
** Setting up an Rsync repository
:PROPERTIES:
:DESCRIPTION: Set up a repository for distribution
:END:
Carbs Linux repositories automatically sync from the git repostitories and serve
it through the rsync daemon. Here is a sample shell script that I use in order to
sync repositories. Feel free to customize for your own use.
#+BEGIN_SRC sh
#!/bin/sh
HOSTNAME="rsync://carbslinux.org/repo"
GITDIR="/pub/git/repo"
SHAREDIR="/pub/share/repo"
git -C "$GITDIR" pull
rsync -avcC --delete --include=core --exclude=.rsync,.rsync_root "$GITDIR/." "$SHAREDIR"
printf '%s\n' "$HOSTNAME" > "$GITDIR/.rsync"
for dir in "$GITDIR/"*; do
[ -d "$dir" ] || continue
[ -f "$dir/.rsync" ] ||
printf '%s/%s\n' "$HOSTNAME" "${dir##*/}" > "$dir/.rsync"
printf '..\n' > "$dir/.rsync_root"
done
#+END_SRC
You can then create an *rsync* user for serving the repositories.
#+BEGIN_EXAMPLE
$ adduser -SD rsync
#+END_EXAMPLE
Create =/etc/rsyncd.conf= and a service configuration as well.
#+BEGIN_EXAMPLE
uid = rsync
gid = rsync
address = example.com
max connections = 10
use chroot = yes
[repo]
path = /pub/share/repo
comment = My repository
#+END_EXAMPLE
Create a service file at =/etc/sv/rsync/run= (runit):
#+BEGIN_SRC sh
#!/bin/sh -e
exec rsync --daemon --no-detach
#+END_SRC
* Comparison Between CPT and KISS
Lots of things have changed since ~cpt~ was forked from ~kiss~ in terms of
functionalities and ideals. This section aims to describe the similarities and
differences of both package managers as neutral as possible. Keep in mind that
this is the ~cpt~ documentation, so it may be biased regardless.
- Package Manager ::
While ~kiss~ aims to be a simple single file package manager, ~cpt~ aims to be
an extendable package manager library. ~kiss~ has all of its features
built-in, while ~cpt~ has all of its features separated into small tools.
These tools can be called from the main ~cpt~ tool (in order to keep
~kiss~-like usage) or with their names directly (e.g ~cpt-build~).
- Configuration ::
Neither ~kiss~ nor ~cpt~ use configuration files. Instead, they are configured
through environment variables. Additionally, all ~cpt~ tools can receive flags
that alter their functionality. ~kiss~ does not accept flags.
- Package Repositories ::
In addition to git repositories, ~cpt~ also makes use of [[Rsync Repositories][rsync repositories]].
- Package Sources ::
In addition to git repositories for sources, ~cpt~ also supports mercurial
repositories.
- Post-Installation Messages ::
~kiss~ and ~cpt~ interact with =post-install= messages differently. ~kiss~
does not differentiate between post-installation scripts and post-installation
messages, and will save the output of all scripts named =post-install= to be
printed after the installation of all packages are complete. ~cpt~ on the
other hand, separates these with the =message= file. ~cpt~ runs =post-install=
without saving the output to be printed a second time. It instead prints all
=message= files after the installation is over.
- Portability ::
~kiss~ aims to be as portable as possible. ~cpt~ aims to be portable, but
favours performance. ~cpt~ depends on ~rsync~ for package installation, while
~kiss~ has removed the dependency in favour of portability.
* CPT Library
:PROPERTIES:
:DESCRIPTION: Documentation of the Library
:END:
=cpt-lib= is the library of Carbs Packaging Tools which can be used to extend
the functionality of the package manager. This is the API documentation of the
package manager library.
** Calling the library
:PROPERTIES:
:DESCRIPTION: Including the library on your code
:END:
You can call the library on your scripts by adding the following line to your
files:
#+begin_src sh
#!/bin/sh -e
. cpt-lib
#+end_src
This will load the library inside your script, and will set some environment
variables that are used inside the package manager.
** Option parsing
:PROPERTIES:
:DESCRIPTION: Easy way of parsing options with cpt-lib
:END:
=cpt-lib= includes a POSIX-shell option parser inside named =getoptions=. You
can see its own [[https://github.com/ko1nksm/getoptions/blob/v2.5.0/README.md][documentation]] for writing an option parser. The built-in version
of the =getoptions= library is 2.5.0 and there are no plans for updating it
apart from bug fixes.
*** Defining a parser
:PROPERTIES:
:DESCRIPTION: Correct way of using getoptions
:END:
Some functions are called and set automatically when you call =cpt-lib=, so you
shouldn't define the option parser after calling the library, as some of the
variables will already be set.
If the function =parser_definition()= as defined when =cpt-lib= is called,
cpt-lib will handle the option parsing itself by calling =getoptions=
inside. Here is the proper way of doing it.
#+begin_src sh
#!/bin/sh -e
parser_definition() {
# The rest arguments MUST be defined as 'REST'
setup REST help:usage -- "usage: ${0##*/} [options] [pkg...]"
msg -- '' 'Options:'
flag CPT_TEST -t export:1 init:@export -- "Enable tests"
global_options
}
. cpt-lib
#+end_src
*** =global_options()=
:PROPERTIES:
:DESCRIPTION: Convenience function for defining common flags
:END:
The =global_options()= function is a simple convenience call to include flags
that can be used inside most =cpt= tools. It defines the following flags:
| Flag | Long Option | Calls |
|------+---------------+--------------|
| ~-f~ | ~--force~ | =CPT_FORCE= |
| ~-y~ | ~--no-prompt~ | =CPT_PROMPT= |
| | ~--root~ | =CPT_ROOT= |
| ~-h~ | ~--help~ | =usage()= |
| ~-v~ | ~--version~ | =version()= |
** Message functions
:PROPERTIES:
:DESCRIPTION: Communicate to users
:END:
=cpt= has various functions to print information to users.
*** =out()=
:PROPERTIES:
:DESCRIPTION: Print a message as-is
:END:
=out()= is a really simple function that prints messages to the standard
output. It prints every argument with a newline. It is not meant to communicate
with the user, it just exists to have a simple function to interact with other
functions.
#+begin_src sh
$ out "This is an example call" "How are you?"
This is an example call
How are you?
#+end_src
*** =log()=
:PROPERTIES:
:DESCRIPTION: Print a message prettily
:END:
=log()= is the most commonly used message function in the package manager. It is
used to pretty print messages with visual cues, so it is easier to read and
understand for the users. It changes message output for each argument it
receives (takes up to three arguments).
- If it takes a single argument, it prints a yellow leading arrow followed by
colorless text.
- If it takes two arguments, it prints a yellow leading arrow followed by the
first argument (colored blue), and then followed by colorless second argument.
- If it takes three arguments, instead of a yellow arrow, it prints the third
argument in yellow, followed by the same two arguments as above.
*** =die()=
:PROPERTIES:
:DESCRIPTION: Print a message and exit with error
:END:
=die()= wraps the =log()= function and exits with an error (1). It takes one or
two arguments, which are sent to the =log()= function. The third argument for
=log()= is set as =!>=.
*** =warn()=
:PROPERTIES:
:DESCRIPTION: Print a warning message
:END:
=warn()= is another function that wraps =log()=. In place of the third argument,
it uses the word =WARNING=.
*** =prompt()=
:PROPERTIES:
:DESCRIPTION: Ask the user whether they want to continue
:END:
=prompt()= is an interactive function that waits for user input to continue.
It takes a single argument string to print a message, and then asks the user
whether they want to continue or not. Prompts can be disabled by the user if
they use a flag to disable them or set =CPT_PROMPT= to 0.
** Text functions
:PROPERTIES:
:DESCRIPTION: Manipulate or check text
:END:
Following functions are used to manipulate, check, or interact with text.
*** =contains()=
:PROPERTIES:
:DESCRIPTION: Check if a "string list" contains a word
:END:
=contains= function can be used to check whether a list variable contains a
given string. If the string is inside the list, it will return 0, otherwise 1.
#+begin_src sh
# Usage
contains "$LIST" foo
contains "foo bar" foo # Returns 0
contains "foo bar" baz # Returns 1
#+end_src
*** =regesc()=
:PROPERTIES:
:DESCRIPTION: Escape regular expression characters
:END:
=regesc()= can be used to escape regular expression characters that are defined
in POSIX BRE. Those characters are, =$=, =.=, =*=, =[=, =\\=, and =^=.
#+begin_src sh
regesc '^[$\' # Returns \^\[\$\\
#+end_src
*** =pop()=
:PROPERTIES:
:DESCRIPTION: Remove an item from a string list
:END:
=pop()= can be used to remove a word from a "string list" without a =sed=
call. Word splitting is intentional when using this function.
#+begin_src sh
# Usage
pop foo from $LIST
pop foo from foo baz bar # Returns baz bar
#+end_src
*** =sepchar()=
:PROPERTIES:
:DESCRIPTION: Separate characters from a string
:END:
This function can be used to separate characters from the given string without
resorting to external resources.
#+begin_src sh
sepchar mystring
# Prints:
# m
# y
# s
# t
# r
# i
# n
# g
#+end_src
** Portability functions
:PROPERTIES:
:DESCRIPTION: Functions to replace non-POSIX commands
:END:
These helper functions are used so that we don't depend on non-POSIX programs for
certain functionality. They are prefixed with the =_= character.
*** =_seq()=
:PROPERTIES:
:DESCRIPTION: 'seq(1)' but no newline
:END:
This function is similar to =seq(1)= except that it only takes a single argument
and doesn't print any newlines. It is suitable to be used in =for= loops.
#+begin_src sh
_seq 5
# Prints:
# 1 2 3 4 5
#+end_src
*** =_stat()=
:PROPERTIES:
:DESCRIPTION: 'stat %U' replacement
:END:
This function imitates =stat %U=. =stat= isn't defined by POSIX, and this is
also a GNU extension. This function returns the owner of a file. If the owner
cannot be found, it will return =root=.
*** =_readlinkf()=
:PROPERTIES:
:DESCRIPTION: 'readlink -f' replacement
:END:
This function was taken from [[https://github.com/ko1nksm/readlinkf][POSIX sh readlinkf library by Koichi Nakashima]].
=readlink= is also not defined by POSIX, so this function uses =ls= to follow
symbolic links until it reaches the actual file.
** TODO System Functions
:PROPERTIES:
:DESCRIPTION: Functions to manipulate your system
:END:
*** =as_root()=
:PROPERTIES:
:DESCRIPTION: Run a command as the root user
:END:
=as_root()= calls the rest of the arguments as a different user. Unless a ~$user~
environment variable is set, it will call the following arguments as the root
user. It supports the following programs for privilege escalation with the
following order:
1. =ssu=
2. =sudo=
3. =doas=
4. =su=
The program called for this operation can be overridden using the ~$CPT_SU~
variable.
** TODO Package Functions
:PROPERTIES:
:DESCRIPTION: Manipulate, or query anything related to packages
:END:
Obviously, package functions are the most important ones for =cpt-lib=, those
are the ones you will use to build, to query, to manipulate, or to otherwise
interact with packages.
*** =pkg_owner()=
:PROPERTIES:
:DESCRIPTION: Check which package owns the given file
:END:
This function can be used to determine the owner of a package. The first
argument is used for flags that will be passed to =grep=, and the second one is
for the file query. Rest of the arguments can be used in order to specify the
manifests to be used, but it is optional. =pkg_owner()= will search for all the
installed packages if no other arguments are given.
#+begin_src sh
# Example
pkg_owner -lFx /usr/bin/grep # Returns 'busybox'
# An example call made by `pkg_fix_deps()` to figure out whether the built
# package contains the file it depends.
pkg_owner -l "/${dep#/}\$" "$PWD/manifest" >/dev/null && continue
pkg_owner -l "/${dep#/}\$" "$@" ||:
#+end_src
*** =pkg_isbuilt()=
:PROPERTIES:
:DESCRIPTION: Check whether the given package is built
:END:
This function returns with success when the given package has a built tarball
with the matching version and release strings from the repository.
*** =pkg_lint()=
:PROPERTIES:
:DESCRIPTION: Check whether a package directory fits the standards
:END:
This function checks whether a given package fits the proper package
specification. This function *does not return with failure, it exits outright*
if it fails.
*** =pkg_find()=
:PROPERTIES:
:DESCRIPTION: Query package locations
:END:
=pkg_find()= is the tool for searching packages. It accepts up to 3 arguments.
- $1: Query ::
This is the only mandatory argument. It accepts globbing, meaning that shell
wildcards can be used in the query.
- $2: Match ::
If this exists =pkg_find()= will print every single match found in the search
path. If it doesn't, =pkg_find()= will print the first match and exit.
- $3: Type ::
This is the argument to be passed to the =test= function. Unless this argument
is given, it defaults to =-d=, which tests for directories.
#+begin_src sh
# Returns the first match of cpt
pkg_find cpt
# Returns all matches of cpt
pkg_find cpt all
# Returns all globbed matches for cpt* (e.g. cpt and cpt-extra)
pkg_find 'cpt*' all
# Returns all matching cpt-* executables on user's PATH
SEARCH_PATH=$PATH pkg_find 'cpt-*' all -x
#+end_src
*** TODO =pkg_get_base()=
This function returns the base packages as defined in =/etc/cpt-base=.
*** TODO =pkg_gentree=
:PROPERTIES:
:DESCRIPTION: Generate a dependency tree for the given package
:END:
Keep in mind /etc/cpt-base
|