aboutsummaryrefslogtreecommitdiff
path: root/kiss-new
blob: 2dd5f196cbf1bb0c80f1b289872eb4f0613d5f95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
#!/bin/sh -e
#
# This is a simple package manager written in POSIX 'sh' for
# KISS Linux utlizing the core unix utilites where needed.
#
# The script runs with 'set -e' enabled. It will exit on any
# non-zero return code. This ensures that no function continues
# if it fails at any point.
#
# Keep in mind that this involves extra code in the case where
# an error is optional or required.
#
# Where possible the package manager should "error first".
# Check things first, die is necessary and continue if all is well.
#
# The code below conforms to shellcheck's rules. However, some
# lint errors *are* disabled as they relate to unexpected
# behavior (which we do expect).
#
# KISS is available under the MIT license.
#
# - Dylan Araps.

die() {
    # Print a message and exit with '1' (error).
    printf '\033[31m!>\033[m %s\n' "$@" >&2
    exit 1
}

log() {
    # Print a message with a colorful arrow to distinguish
    # from other output.
    printf '\033[32m=>\033[m %s\n' "$@"
}

pkg_lint() {
    # Check that each mandatory file in the package entry exists.
    log "[$1]: Checking repository files..."

    pkg_location=$(pkg_search "$1")

    cd "$pkg_location" || die "'$pkg_location' not accessible"

    [ -f sources ]  || die "Sources file not found."
    [ -x build ]    || die "Build file not found or not executable."
    [ -s licenses ] || die "License file not found or empty."
    [ -s version ]  || die "Version file not found or empty."

    # Ensure that the release field in the version file is set
    # to something.
    read -r _ rel < version
    [ "$rel" ] || die "Release field not found in version file."

    # Unset this variable so it isn't used again on a failed
    # source. There's no 'local' keyword in POSIX sh.
    rel=
}

pkg_search() {
    # Figure out which repository a package belongs to by
    # searching for directories matching the package name
    # in $KISS_PATH/*.
    [ "$KISS_PATH" ] || \
        die "\$KISS_PATH needs to be set." \
            "Example: KISS_PATH=/packages/core:/packages/extra:/packages/xorg" \
            "Repositories will be searched in the configured order." \
            "The variable should work just like \$PATH."

    # Disable globbing with 'set -f' to ensure that the unquoted
    # variable doesn't expand into anything nasty.
    # shellcheck disable=2086,2046
    {
        set -f
        set -- "$1" $(IFS=:; find $KISS_PATH -maxdepth 1 -name "$1")
        set +f
    }

    # A package may also not be found due to a repository not being
    # readable by the current user. Either way, we need to die here.
    [ -z "$2" ] && die "Package '$1' not in any repository."

    printf '%s\n' "$2"
}

pkg_list() {
    # List installed packages. As the format is files and
    # diectories, this just involves a simple for loop and
    # file read.

    # Change directories to the database. This allows us to
    # avoid having to basename each path. If this fails,
    # set '$1' to mimic a failed glob which indicates that
    # nothing is installed.
    cd "$KISS_ROOT/var/db/kiss/" 2>/dev/null ||
        set -- "$KISS_ROOT/var/db/kiss/"\*

    # Optional arguments can be passed to check for specific
    # packages. If no arguments are passed, list all. As we
    # loop over '$@', if there aren't any arguments we can
    # just set the directory contents to the argument list.
    [ "$1" ] || set -- *

    # If the 'glob' above failed, exit early as there are no
    # packages installed.
    [ "$1" = "$KISS_ROOT/var/db/kiss/"\* ] && return

    # Loop over each version file and warn if one doesn't exist.
    # Also warn if a package is missing its version file.
    for pkg; do
        [ -d "$pkg" ] || {
            log "Package '$pkg' is not installed."
            return 1
        }

        [ -f "$pkg/version" ] || {
            log "Warning: Package '$pkg' has no version file."
            return
        }

        read -r version release < "$pkg/version" &&
            printf '%s\n' "$pkg $version-$release"
    done
}

pkg_sources() {
    # Download any remote package sources. The existence of local
    # files is also checked.
    log "[$1]: Downloading sources..."

    # Store each downloaded source in named after the package it
    # belongs to. This avoid conflicts between two packages having a
    # source of the same name.
    mkdir -p "$src_dir/$1" && cd "$src_dir/$1"

    # Find the package's repository files. This needs to keep
    # happening as we can't store this data in any kind of data
    # structure.
    repo_dir=$(pkg_search "$1")

    while read -r src _; do
        case $src in
            # Git repository.
            git:*)
                git clone "${src##git:}" "$mak_dir"
            ;;

            # Remote source.
            *://*)
                [ -f "${src##*/}" ] && {
                    log "[$1]: Found cached source '${src##*/}'."
                    continue
                }

                wget "$src" || {
                    rm -f "${src##*/}"
                    die "[$1]: Failed to download $src."
                }
            ;;

            # Local files (Any source that is non-remote is assumed to be local).
            *)
                [ -f "$repo_dir/$src" ] ||
                    die "[$1]: No local file '$src'."

                log "[$1]: Found local file '$src'."
            ;;
        esac
    done < "$repo_dir/sources"
}

pkg_extract() {
    # Extract all source archives to the build diectory and copy over
    # any local repository files.
    log "[$1]: Extracting sources..."

    # Store each downloaded source in named after the package it
    # belongs to. This avoid conflicts between two packages having a
    # source of the same name.
    mkdir -p "$mak_dir/$1" && cd "$mak_dir/$1"

    # Find the package's repository files. This needs to keep
    # happening as we can't store this data in any kind of data
    # structure.
    repo_dir=$(pkg_search "$1")

    while read -r src dest; do
        mkdir -p "./$dest"

        case $src in
            # Do nothing as git repository was downloaded to the build
            # diectory directly.
            git:*) ;;

            # Only 'tar' archives are currently supported for extaction.
            # Any other filetypes are simply copied to '$mak_dir' which
            # allows you to extract them manually.
            *://*.tar*|*://*.tgz)
                tar xf "$src_dir/$1/${src##*/}" -C "./$dest" \
                    --strip-components 1 \
                || die "[$1]: Couldn't extract ${src##*/}."
            ;;

            # Local files (Any source that is non-remote is assumed to be local).
            *)
                [ -f "$repo_dir/$src" ] || die "[$1]: Local file $src not found."
                cp -f "$repo_dir/$src" "./$dest"
            ;;
        esac
    done < "$repo_dir/sources"
}

pkg_depends() {
    # Resolve all dependencies and install them in the right order.

    # Find the package's repository files. This needs to keep
    # happening as we can't store this data in any kind of data
    # structure.
    repo_dir=$(pkg_search "$1")

    # This does a depth-first search. The deepest dependencies are
    # listed first and then the parents in reverse order.
    if pkg_list "$1" >/dev/null; then
        # If a package is already installed but 'pkg_depends' was
        # given an argument, add it to the list anyway.
        [ "$2" ] && missing_deps="$missing_deps $1 "
    else
        case $missing_deps in
            # Dependency is already in list, skip it.
            *" $1 "*) ;;

            *)
                # Recurse through the dependencies of the child
                # packages. Keep doing this.
                [ -f "$repo_dir/depends" ] &&
                    while read -r dep _; do
                        pkg_depends "$dep" ||:
                    done < "$repo_dir/depends"

                # After child dependencies are added to the list,
                # add the package which depends on them.
                missing_deps="$missing_deps $1 "
            ;;
        esac
    fi
}

pkg_verify() {
    # Verify all package checksums. This is achieved by generating
    # a new set of checksums and then comparing those with the old
    # set.

    # Find the package's repository files. This needs to keep
    # happening as we can't store this data in any kind of data
    # structure.
    repo_dir=$(pkg_search "$1")

    # Generate a second set of checksums to compare against the
    # repositorie's checksums for the package.
    pkg_checksums .checksums "$1"

    # Compare the checksums using 'cmp'.
    cmp -s "$repo_dir/.checksums" "$repo_dir/checksums" || {
        log "[$1]: Checksum mismatch."

        # Instead of dying above, log it to the terminal. Also define a
        # variable so we *can* die after all checksum files have been
        # checked.
        mismatch="$mismatch$1 "
    }

    # The second set of checksums use a temporary file, we need to
    # delete it.
    rm -f "$repo_dir/.checksums"
}

pkg_strip() {
    # Strip package binaries and libraries. This saves space on the
    # system as well as on the tarballs we ship for installation.

    # Find the package's repository files. This needs to keep
    # happening as we can't store this data in any kind of data
    # structure.
    repo_dir=$(pkg_search "$1")

    # Package has stripping disabled, stop here.
    [ -f "$repo_dir/nostrip" ] && return

    log "[$1]: Stripping binaries and libraries..."

    find "$pkg_dir/$1" -type f | while read -r binary; do
        case $(file -bi "$binary") in
            application/x-sharedlib*|application/x-pie-executable*)
                strip_opts=--strip-unneeded
            ;;

            application/x-archive*)    strip_opts=--strip-debug ;;
            application/x-executable*) strip_opts=--strip-all ;;

            *) continue ;;
        esac

        # Suppress errors here as some binaries and libraries may
        # fail to strip. This is OK.
        strip "$strip_opts" "$binary" 2>/dev/null ||:
    done
}

pkg_manifest() (
    # Generate the package's manifest file. This is a list of each file
    # and directory inside the package. The file is used when uninstalling
    # packages, checking for package conflicts and for general debugging.
    #
    # This funcion runs as a subshell to avoid having to 'cd' back to the
    # prior directory before being able to continue.
    cd "$pkg_dir/$1"

    # Find all files and directories in the package. Directories are printed
    # with a trailing forward slash '/'. The list is then reversed with
    # directories appearing *after* their contents.
    find . -mindepth 1 -type d -exec printf '%s/\n' {} + -or -print |
    sort -r | sed -e ss.ss > "$pkg_dir/$1/var/db/kiss/$1/manifest"

    log "[$1]: Generated manifest."
)

pkg_tar() {
    # Create a tarball from the built package's files.
    # This tarball also contains the package's database entry.

    # Find the package's repository files. This needs to keep
    # happening as we can't store this data in any kind of data
    # structure.
    repo_dir=$(pkg_search "$1")

    # Read the version information to name the package.
    read -r version release < "$repo_dir/version"

    # Create a tarball from the contents of the built package.
    tar zpcf "$bin_dir/$1#$version-$release.tar.gz" -C "$pkg_dir/$1" . ||
        die "[$1]: Failed to create tarball."

    log "[$1]: Successfully created tarball."
}

pkg_build() {
    # Build packages and turn them into packaged tarballs. This function
    # also checks checksums, downloads sources and ensure all dependencies
    # are installed.

    # Resolve dependencies and generate a list.
    # Send 'force' to 'pkg_depends' to always include the explicitly
    # requested packages.
    log "Resolving dependencies..."
    for pkg; do pkg_depends "$pkg" force; done

    # Disable globbing with 'set -f' to ensure that the unquoted
    # variable doesn't expand into anything nasty.
    # shellcheck disable=2086,2046
    {
        # Set the resolved dependency list as the function's arguments.
        set -f
        set -- $missing_deps
        set +f
    }
    log "Installing: $*."

    for pkg; do pkg_lint "$pkg"; done
    for pkg; do
        # Find the package's repository files. This needs to keep
        # happening as we can't store this data in any kind of data
        # structure.
        repo_dir=$(pkg_search "$pkg")

        # Ensure that checksums exist prior to building the package.
        [ -f "$repo_dir/checksums" ] || {
            log "[$pkg]: Checksums are missing."

            # Instead of dying above, log it to the terminal. Also define a
            # variable so we *can* die after all checksum files have been
            # checked.
            no_checkums="$no_checkums$pkg "
        }
    done

    # Die here as packages without checksums were found above.
    [ "$no_checkums" ] &&
        die "Run '$kiss checksum ${no_checkums% }' to generate checksums."

    for pkg; do pkg_sources "$pkg"; done
    for pkg; do pkg_verify  "$pkg"; done

    # Die here as packages with differing checksums were found above.
    [ "$mismatch" ] && die "Checksum mismatch with: ${mismatch% }"

    log "Verified all checksums."

    log "Extracting all sources..."
    for pkg; do pkg_extract "$pkg"; done
    log "Extracted all sources."

    log "Building packages..."
    for pkg; do
        # Find the package's repository files. This needs to keep
        # happening as we can't store this data in any kind of data
        # structure.
        repo_dir=$(pkg_search "$pkg")

        # Install built packages to a directory under the package name
        # to avod collisions with other packages.
        mkdir -p "$pkg_dir/$pkg/var/db/kiss"

        # Move to the build directory and call the build script.
        (cd "$mak_dir/$pkg"; "$repo_dir/build" "$pkg_dir/$pkg") ||
            die "[$pkg]: Build failed."

        # Copy the repository files to the package directory.
        # This acts as the database entry.
        cp -Rf "$repo_dir" "$pkg_dir/$pkg/var/db/kiss/"

        log "[$pkg]: Sucessfully built package."

        # Create the manifest file early and make it empty.
        # This ensure that the manifest is added to the manifest...
        : > "$pkg_dir/$pkg/var/db/kiss/$pkg/manifest"
    done

    log "Stripping packages..."
    for pkg; do pkg_strip "$pkg"; done
    log "Stripped all binaries and libraries."

    log "Generating package manifests..."
    for pkg; do pkg_manifest "$pkg"; done
    log "Generated all manifests."

    log "Creating package tarballs..."
    for pkg; do pkg_tar "$pkg"; done
    log "Created all packages."
}

pkg_checksums() {
    # Generate checksums for packages.
    # This also downloads any remote sources.
    checksum_file=$1
    shift

    for pkg; do
        # Find the package's repository files. This needs to keep
        # happening as we can't store this data in any kind of data
        # structure.
        repo_dir=$(pkg_search "$pkg")

        while read -r src _; do
            case $src in
                # Git repository.
                # Skip checksums on git repositories.
                git:*) ;;

                *)
                    # File is local to the package and is stored in the
                    # repository.
                    [ -f "$repo_dir/$src" ] &&
                        src_path=$repo_dir/${src%/*}

                    # File is remote and was downloaded.
                    [ -f "$src_dir/$pkg/${src##*/}" ] &&
                        src_path=$src_dir/$pkg

                    # Die here if source for some reason, doesn't exist.
                    [ "$src_path" ] ||
                        die "[$pkg]: Couldn't find source '$src'."

                    # An easy way to get 'sha256sum' to print with the basenames
                    # of files is to 'cd' to the file's directory beforehand.
                    (cd "$src_path" && sha256sum "${src##*/}") ||
                        die "[$pkg]: Failed to generate checksums."

                    # Unset this variable so it isn't used again on a failed
                    # source. There's no 'local' keyword in POSIX sh.
                    src_path=
                ;;
            esac
        done < "$repo_dir/sources" > "$repo_dir/$checksum_file"

        log "[$pkg]: Generated/Verified checksums."
    done
}

pkg_conflicts() {
    # Check to see if a package conflicts with another.
    # This function takes a path to a KISS tarball as an argument.
    log "Checking for package conflicts."

    # Extract manifest from the tarball and only extract files entries.
    tar xf "$1" -O "./var/db/kiss/$pkg_name/manifest" |
    while read -r line; do
        [ "${line%%*/}" ] && printf '%s\n' "$line" >> "$cac_dir/manifest-$pid"
    done ||:

    # Compare extracted manifest to all installed manifests.
    # If there are matching lines (files) there is a package conflict.
    for db in "$KISS_ROOT/var/db/kiss/"*; do
        [ "$pkg_name" = "${db##*/}" ] && continue

        grep -Fxf "$cac_dir/manifest-$pid" "$db/manifest" 2>/dev/null &&
            die "Package '$pkg_name' conflicts with '${db##*/}'."
    done

    # Remove this temporary file as we no longer need it.
    rm -f "$cac_dir/manifest-$pid"
}

pkg_remove() {
    # Remove a package and all of its files. The '/etc' directory
    # is handled differently and configuration files are *not*
    # overwritten.

    # Create a backup of 'rm' and 'rmdir' so they aren't removed
    # during package removal. This ensures that an upgrade to 'busybox'
    # or your coreutils of choice doesn't break the package manager.
    cp "$(command -v rm)"    "$cac_dir"
    cp "$(command -v rmdir)" "$cac_dir"

    for pkg; do
        # The package is not installed, don't do anything.
        pkg_list "$pkg" >/dev/null || continue

        while read -r file; do
            # The file is in '/etc' skip it. This prevents the package
            # manager from removing user edited config files.
            [ "${file##/etc/*}" ] || continue

            if [ -d "$KISS_ROOT/$file" ]; then
                "$cac_dir/rmdir" "$KISS_ROOT/$file" 2>/dev/null || continue
            else
                "$cac_dir/rm" -f -- "$KISS_ROOT/$file" ||
                    log "Failed to remove '$file'."
            fi
        done < "$KISS_ROOT/var/db/kiss/$pkg/manifest"

        log "Successfully removed '$pkg'."
    done
}

pkg_install() {
    # Install a built package tarball.

    for pkg; do
        # Install can also take the full path to a tarball.
        # We don't need to check the repository if this is the case.
        if [ -f "$pkg" ]; then
            tar_file=$pkg

        else
            # Find the package's repository files. This needs to keep
            # happening as we can't store this data in any kind of data
            # structure.
            repo_dir=$(pkg_search "$pkg")

            # Read the version information to name the package.
            read -r version release < "$repo_dir/version"

            # Construct the name of the package tarball.
            tar_name=$pkg\#$version-$release.tar.gz

            [ -f "$bin_dir/$tar_name" ] ||
                die "Package '$pkg' has not been built." \
                    "Run '$kiss build $pkg'."

            tar_file=$bin_dir/$tar_name
        fi

        # Figure out which package the tarball installs by checking for
        # a database entry inside the tarball. If no database entry exists,
        # exit here as the tarball is *most likely* not a KISS package.
        {
            pkg_name=$(tar tf "$tar_file" | grep -x "\./var/db/kiss/.*/version")
            pkg_name=${pkg_name%/*}
            pkg_name=${pkg_name##*/}
        } || die "'$tar_file' is not a valid KISS package."

        pkg_conflicts "$tar_file"

        # Extract the tarball early to catch any errors before installation
        # begins. The package manager uninstalls the previous package during
        # an upgrade so any errors need to be caught ASAP.
        tar pxf "$tar_file" -C "$tar_dir/" ||
            die "[$pkg]: Failed to extract tarball."

        # Create a backup of 'mv', 'mkdir' and 'find' so they aren't removed
        # during package removal. This ensures that an upgrade to 'busybox' or
        # your coreutils of choice doesn't break the package manager.
        cp "$(command -v mv)"    "$cac_dir"
        cp "$(command -v mkdir)" "$cac_dir"
        cp "$(command -v find)"  "$cac_dir"

        log "Removing previous version of package if it exists."
        pkg_remove "$pkg_name"

        # Installation works by unpacking the tarball to a specified location,
        # manually running 'mkdir' to create each directory and finally, using
        # 'mv' to move each file.
        cd "$tar_dir"

        # Create all of the package's directories.
        # Optimization: Only find the deepest directories.
        "$cac_dir/find" . -type d -links -3 -prune | while read -r dir; do
            "$cac_dir/mkdir" -p "$KISS_ROOT/${dir#./}"
        done

        # Move all package files to '$KISS_ROOT'.
        "$cac_dir/find" ./ -mindepth 1 -not -type d | while read -r file; do
            rpath=${file#.}

            # Don't overwrite existing '/etc' files.
            [ -z "${rpath##/etc/*}" ] &&
            [ -f "$KISS_ROOT/${rpath%/*}/${file##*/}" ] &&
                return

            "$cac_dir/mv" "$file" "$KISS_ROOT/${rpath%/*}"
        done

        # Run the post install script and suppress errors. If it exists,
        # it will run, else nothing will happen.
        "$KISS_ROOT/var/db/kiss/$pkg_name/post-install" 2>/dev/null ||:

        log "Successfully installed '$pkg_name'."
    done
}

pkg_updates() {
    # Check all installed packages for updates. So long as the installed
    # version and the version in the repositories differ, it's considered
    # an update.
    for pkg in "$KISS_ROOT/var/db/kiss/"*; do
        # Find the package's repository files. This needs to keep
        # happening as we can't store this data in any kind of data
        # structure.
        repo_dir=$(pkg_search "${pkg##*/}")

        # Read version and release information from the installed packages
        # and repository.
        read -r db_ver db_rel < "$pkg/version"
        read -r re_ver re_rel < "$repo_dir/version"

        # Compare installed packages to repository packages.
        [ "$db_ver-$db_rel" != "$re_ver-$re_rel" ] &&
            printf '%s\n' "${pkg##*/} $re_ver-$re_rel"
    done
}

setup_caching() {
    # Setup the host machine for the package manager. Create any
    # directories which need to exist and set variables for easy
    # access to them.

    # Main cache directory (~/.cache/kiss/) typically.
    mkdir -p "${cac_dir:=${XDG_CACHE_HOME:=$HOME/.cache}/kiss}" ||
        die "Couldn't create cache directory ($cac_dir)."

    # Build directory.
    mkdir -p "${mak_dir:=$cac_dir/build-$pid}" ||
        die "Couldn't create build directory ($mak_dir)."

    # Package directory.
    mkdir -p "${pkg_dir:=$cac_dir/pkg-$pid}" ||
        die "Couldn't create package directory ($pkg_dir)."

    # Tar directory.
    mkdir -p "${tar_dir:=$cac_dir/extract-$pid}" ||
        die "Couldn't create tar directory ($tar_dir)."

    # Source directory.
    mkdir -p "${src_dir:=$cac_dir/sources}" ||
        die "Couldn't create source directory ($src_dir)."

    # Binary directory.
    mkdir -p "${bin_dir:=$cac_dir/bin}" ||
        die "Couldn't create binary directory ($bin_dir)."
}

pkg_clean() {
    # Clean up on exit or error. This removes everything related
    # to the build.

    # Remove temporary directories.
    rm -rf -- "$mak_dir" "$pkg_dir" "$tar_dir"

    # Remove cached commands.
    rm -f  -- "$cac_dir/find" "$cac_dir/mv" "$cac_dir/mkdir" \
              "$cac_dir/rm" "$cac_dir/rmdir"
}

root_check() {
    # Ensure that the user has write permissions to '$KISS_ROOT'.
    # When this variable is empty, a value of '/' is assumed.
    [ -w "$KISS_ROOT/" ] || \
        die "No write permissions to '${KISS_ROOT:-/}'." \
            "You may need to run '$kiss' as root."
}

args() {
    # Parse script arguments manually. POSIX 'sh' has no 'getopts'
    # or equivalent built in. This is rather easy to do in our case
    # since the first argument is always an "action" and the arguments
    # that follow are all package names.

    # Actions can be abbreviated to their first letter. This saves
    # keystrokes once you memorize themand it also has the side-effect
    # of "correcting" spelling mistakes assuming the first letter is
    # right.
    case $1 in
        # Build the list of packages.
        b*)
            shift
            [ "$1" ] || die "'kiss build' requires an argument."
            pkg_build "$@"
        ;;

        # Generate checksums for packages.
        c*)
            shift
            [ "$1" ] || die "'kiss checksum' requires an argument."

            for pkg; do pkg_lint    "$pkg"; done
            for pkg; do pkg_sources "$pkg"; done

            pkg_checksums checksums "$@"
        ;;

        # Install packages.
        i*)
            shift
            [ "$1" ] || die "'kiss install' requires an argument."
            root_check
            pkg_install "$@"
        ;;

        # Remove packages.
        r*)
            shift
            [ "$1" ] || die "'kiss remove' requires an argument."
            root_check
            pkg_remove "$@"
        ;;

        # List installed packages.
        l*)
            shift
            pkg_list "$@"
        ;;

        # Upgrade packages.
        u*)
            pkg_updates
        ;;

        # Print version and exit.
        v*)
            log "$kiss 0.1.10"
        ;;

        # Catch all invalid arguments as well as
        # any help related flags (-h, --help, help).
        *)
            log "$kiss [b|c|i|l|r|u] [pkg]" \
                "build:     Build a package." \
                "checksum:  Generate checksums." \
                "install:   Install a package (Runs build if needed)." \
                "list:      List packages." \
                "remove:    Remove a package." \
                "update:    Check for updates."
        ;;
    esac
}

main() {
    # Store the script name in a variable and use it everywhere
    # in place of 'kiss'. This allows the script name to be changed
    # easily.
    kiss=${0##*/}

    # The PID of the current shell process is used to isolate directories
    # to each specific KISS instance. This allows multiple package manager
    # instances to be run at once. Store the value in another variable so
    # that it doesn't change beneath us.
    pid=$$

    # Catch errors and ensure that build files and directories are cleaned
    # up before we die. This occurs on 'Ctrl+C' as well as sucess and error.
    trap pkg_clean EXIT INT

    setup_caching
    args "$@"
}

main "$@"