aboutsummaryrefslogtreecommitdiff
path: root/archival/bz/blocksort.c
diff options
context:
space:
mode:
authorDenys Vlasenko <vda.linux@googlemail.com>2010-11-03 02:38:31 +0100
committerDenys Vlasenko <vda.linux@googlemail.com>2010-11-03 02:38:31 +0100
commit833d4e7f84f59099ee66eabfa3457ebb7d37eaa8 (patch)
tree3be84e1049707ce8077291065fe3689497c69b9c /archival/bz/blocksort.c
parent5e9934028aa030312a1a2e2e32d5ceade8672beb (diff)
downloadbusybox-833d4e7f84f59099ee66eabfa3457ebb7d37eaa8.tar.gz
rename archival/libunarchive -> archival/libarchive; move bz/ into it
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Diffstat (limited to 'archival/bz/blocksort.c')
-rw-r--r--archival/bz/blocksort.c1072
1 files changed, 0 insertions, 1072 deletions
diff --git a/archival/bz/blocksort.c b/archival/bz/blocksort.c
deleted file mode 100644
index f70c3701d..000000000
--- a/archival/bz/blocksort.c
+++ /dev/null
@@ -1,1072 +0,0 @@
-/*
- * bzip2 is written by Julian Seward <jseward@bzip.org>.
- * Adapted for busybox by Denys Vlasenko <vda.linux@googlemail.com>.
- * See README and LICENSE files in this directory for more information.
- */
-
-/*-------------------------------------------------------------*/
-/*--- Block sorting machinery ---*/
-/*--- blocksort.c ---*/
-/*-------------------------------------------------------------*/
-
-/* ------------------------------------------------------------------
-This file is part of bzip2/libbzip2, a program and library for
-lossless, block-sorting data compression.
-
-bzip2/libbzip2 version 1.0.4 of 20 December 2006
-Copyright (C) 1996-2006 Julian Seward <jseward@bzip.org>
-
-Please read the WARNING, DISCLAIMER and PATENTS sections in the
-README file.
-
-This program is released under the terms of the license contained
-in the file LICENSE.
------------------------------------------------------------------- */
-
-/* #include "bzlib_private.h" */
-
-#define mswap(zz1, zz2) \
-{ \
- int32_t zztmp = zz1; \
- zz1 = zz2; \
- zz2 = zztmp; \
-}
-
-static
-/* No measurable speed gain with inlining */
-/* ALWAYS_INLINE */
-void mvswap(uint32_t* ptr, int32_t zzp1, int32_t zzp2, int32_t zzn)
-{
- while (zzn > 0) {
- mswap(ptr[zzp1], ptr[zzp2]);
- zzp1++;
- zzp2++;
- zzn--;
- }
-}
-
-static
-ALWAYS_INLINE
-int32_t mmin(int32_t a, int32_t b)
-{
- return (a < b) ? a : b;
-}
-
-
-/*---------------------------------------------*/
-/*--- Fallback O(N log(N)^2) sorting ---*/
-/*--- algorithm, for repetitive blocks ---*/
-/*---------------------------------------------*/
-
-/*---------------------------------------------*/
-static
-inline
-void fallbackSimpleSort(uint32_t* fmap,
- uint32_t* eclass,
- int32_t lo,
- int32_t hi)
-{
- int32_t i, j, tmp;
- uint32_t ec_tmp;
-
- if (lo == hi) return;
-
- if (hi - lo > 3) {
- for (i = hi-4; i >= lo; i--) {
- tmp = fmap[i];
- ec_tmp = eclass[tmp];
- for (j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4)
- fmap[j-4] = fmap[j];
- fmap[j-4] = tmp;
- }
- }
-
- for (i = hi-1; i >= lo; i--) {
- tmp = fmap[i];
- ec_tmp = eclass[tmp];
- for (j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++)
- fmap[j-1] = fmap[j];
- fmap[j-1] = tmp;
- }
-}
-
-
-/*---------------------------------------------*/
-#define fpush(lz,hz) { \
- stackLo[sp] = lz; \
- stackHi[sp] = hz; \
- sp++; \
-}
-
-#define fpop(lz,hz) { \
- sp--; \
- lz = stackLo[sp]; \
- hz = stackHi[sp]; \
-}
-
-#define FALLBACK_QSORT_SMALL_THRESH 10
-#define FALLBACK_QSORT_STACK_SIZE 100
-
-static
-void fallbackQSort3(uint32_t* fmap,
- uint32_t* eclass,
- int32_t loSt,
- int32_t hiSt)
-{
- int32_t unLo, unHi, ltLo, gtHi, n, m;
- int32_t sp, lo, hi;
- uint32_t med, r, r3;
- int32_t stackLo[FALLBACK_QSORT_STACK_SIZE];
- int32_t stackHi[FALLBACK_QSORT_STACK_SIZE];
-
- r = 0;
-
- sp = 0;
- fpush(loSt, hiSt);
-
- while (sp > 0) {
- AssertH(sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004);
-
- fpop(lo, hi);
- if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
- fallbackSimpleSort(fmap, eclass, lo, hi);
- continue;
- }
-
- /* Random partitioning. Median of 3 sometimes fails to
- * avoid bad cases. Median of 9 seems to help but
- * looks rather expensive. This too seems to work but
- * is cheaper. Guidance for the magic constants
- * 7621 and 32768 is taken from Sedgewick's algorithms
- * book, chapter 35.
- */
- r = ((r * 7621) + 1) % 32768;
- r3 = r % 3;
- if (r3 == 0)
- med = eclass[fmap[lo]];
- else if (r3 == 1)
- med = eclass[fmap[(lo+hi)>>1]];
- else
- med = eclass[fmap[hi]];
-
- unLo = ltLo = lo;
- unHi = gtHi = hi;
-
- while (1) {
- while (1) {
- if (unLo > unHi) break;
- n = (int32_t)eclass[fmap[unLo]] - (int32_t)med;
- if (n == 0) {
- mswap(fmap[unLo], fmap[ltLo]);
- ltLo++;
- unLo++;
- continue;
- };
- if (n > 0) break;
- unLo++;
- }
- while (1) {
- if (unLo > unHi) break;
- n = (int32_t)eclass[fmap[unHi]] - (int32_t)med;
- if (n == 0) {
- mswap(fmap[unHi], fmap[gtHi]);
- gtHi--; unHi--;
- continue;
- };
- if (n < 0) break;
- unHi--;
- }
- if (unLo > unHi) break;
- mswap(fmap[unLo], fmap[unHi]); unLo++; unHi--;
- }
-
- AssertD(unHi == unLo-1, "fallbackQSort3(2)");
-
- if (gtHi < ltLo) continue;
-
- n = mmin(ltLo-lo, unLo-ltLo); mvswap(fmap, lo, unLo-n, n);
- m = mmin(hi-gtHi, gtHi-unHi); mvswap(fmap, unLo, hi-m+1, m);
-
- n = lo + unLo - ltLo - 1;
- m = hi - (gtHi - unHi) + 1;
-
- if (n - lo > hi - m) {
- fpush(lo, n);
- fpush(m, hi);
- } else {
- fpush(m, hi);
- fpush(lo, n);
- }
- }
-}
-
-#undef fpush
-#undef fpop
-#undef FALLBACK_QSORT_SMALL_THRESH
-#undef FALLBACK_QSORT_STACK_SIZE
-
-
-/*---------------------------------------------*/
-/* Pre:
- * nblock > 0
- * eclass exists for [0 .. nblock-1]
- * ((uint8_t*)eclass) [0 .. nblock-1] holds block
- * ptr exists for [0 .. nblock-1]
- *
- * Post:
- * ((uint8_t*)eclass) [0 .. nblock-1] holds block
- * All other areas of eclass destroyed
- * fmap [0 .. nblock-1] holds sorted order
- * bhtab[0 .. 2+(nblock/32)] destroyed
-*/
-
-#define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31))
-#define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31))
-#define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31)))
-#define WORD_BH(zz) bhtab[(zz) >> 5]
-#define UNALIGNED_BH(zz) ((zz) & 0x01f)
-
-static
-void fallbackSort(uint32_t* fmap,
- uint32_t* eclass,
- uint32_t* bhtab,
- int32_t nblock)
-{
- int32_t ftab[257];
- int32_t ftabCopy[256];
- int32_t H, i, j, k, l, r, cc, cc1;
- int32_t nNotDone;
- int32_t nBhtab;
- uint8_t* eclass8 = (uint8_t*)eclass;
-
- /*
- * Initial 1-char radix sort to generate
- * initial fmap and initial BH bits.
- */
- for (i = 0; i < 257; i++) ftab[i] = 0;
- for (i = 0; i < nblock; i++) ftab[eclass8[i]]++;
- for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i];
-
- j = ftab[0]; /* bbox: optimized */
- for (i = 1; i < 257; i++) {
- j += ftab[i];
- ftab[i] = j;
- }
-
- for (i = 0; i < nblock; i++) {
- j = eclass8[i];
- k = ftab[j] - 1;
- ftab[j] = k;
- fmap[k] = i;
- }
-
- nBhtab = 2 + ((uint32_t)nblock / 32); /* bbox: unsigned div is easier */
- for (i = 0; i < nBhtab; i++) bhtab[i] = 0;
- for (i = 0; i < 256; i++) SET_BH(ftab[i]);
-
- /*
- * Inductively refine the buckets. Kind-of an
- * "exponential radix sort" (!), inspired by the
- * Manber-Myers suffix array construction algorithm.
- */
-
- /*-- set sentinel bits for block-end detection --*/
- for (i = 0; i < 32; i++) {
- SET_BH(nblock + 2*i);
- CLEAR_BH(nblock + 2*i + 1);
- }
-
- /*-- the log(N) loop --*/
- H = 1;
- while (1) {
- j = 0;
- for (i = 0; i < nblock; i++) {
- if (ISSET_BH(i))
- j = i;
- k = fmap[i] - H;
- if (k < 0)
- k += nblock;
- eclass[k] = j;
- }
-
- nNotDone = 0;
- r = -1;
- while (1) {
-
- /*-- find the next non-singleton bucket --*/
- k = r + 1;
- while (ISSET_BH(k) && UNALIGNED_BH(k))
- k++;
- if (ISSET_BH(k)) {
- while (WORD_BH(k) == 0xffffffff) k += 32;
- while (ISSET_BH(k)) k++;
- }
- l = k - 1;
- if (l >= nblock)
- break;
- while (!ISSET_BH(k) && UNALIGNED_BH(k))
- k++;
- if (!ISSET_BH(k)) {
- while (WORD_BH(k) == 0x00000000) k += 32;
- while (!ISSET_BH(k)) k++;
- }
- r = k - 1;
- if (r >= nblock)
- break;
-
- /*-- now [l, r] bracket current bucket --*/
- if (r > l) {
- nNotDone += (r - l + 1);
- fallbackQSort3(fmap, eclass, l, r);
-
- /*-- scan bucket and generate header bits-- */
- cc = -1;
- for (i = l; i <= r; i++) {
- cc1 = eclass[fmap[i]];
- if (cc != cc1) {
- SET_BH(i);
- cc = cc1;
- };
- }
- }
- }
-
- H *= 2;
- if (H > nblock || nNotDone == 0)
- break;
- }
-
- /*
- * Reconstruct the original block in
- * eclass8 [0 .. nblock-1], since the
- * previous phase destroyed it.
- */
- j = 0;
- for (i = 0; i < nblock; i++) {
- while (ftabCopy[j] == 0)
- j++;
- ftabCopy[j]--;
- eclass8[fmap[i]] = (uint8_t)j;
- }
- AssertH(j < 256, 1005);
-}
-
-#undef SET_BH
-#undef CLEAR_BH
-#undef ISSET_BH
-#undef WORD_BH
-#undef UNALIGNED_BH
-
-
-/*---------------------------------------------*/
-/*--- The main, O(N^2 log(N)) sorting ---*/
-/*--- algorithm. Faster for "normal" ---*/
-/*--- non-repetitive blocks. ---*/
-/*---------------------------------------------*/
-
-/*---------------------------------------------*/
-static
-NOINLINE
-int mainGtU(
- uint32_t i1,
- uint32_t i2,
- uint8_t* block,
- uint16_t* quadrant,
- uint32_t nblock,
- int32_t* budget)
-{
- int32_t k;
- uint8_t c1, c2;
- uint16_t s1, s2;
-
-/* Loop unrolling here is actually very useful
- * (generated code is much simpler),
- * code size increase is only 270 bytes (i386)
- * but speeds up compression 10% overall
- */
-
-#if CONFIG_BZIP2_FEATURE_SPEED >= 1
-
-#define TIMES_8(code) \
- code; code; code; code; \
- code; code; code; code;
-#define TIMES_12(code) \
- code; code; code; code; \
- code; code; code; code; \
- code; code; code; code;
-
-#else
-
-#define TIMES_8(code) \
-{ \
- int nn = 8; \
- do { \
- code; \
- } while (--nn); \
-}
-#define TIMES_12(code) \
-{ \
- int nn = 12; \
- do { \
- code; \
- } while (--nn); \
-}
-
-#endif
-
- AssertD(i1 != i2, "mainGtU");
- TIMES_12(
- c1 = block[i1]; c2 = block[i2];
- if (c1 != c2) return (c1 > c2);
- i1++; i2++;
- )
-
- k = nblock + 8;
-
- do {
- TIMES_8(
- c1 = block[i1]; c2 = block[i2];
- if (c1 != c2) return (c1 > c2);
- s1 = quadrant[i1]; s2 = quadrant[i2];
- if (s1 != s2) return (s1 > s2);
- i1++; i2++;
- )
-
- if (i1 >= nblock) i1 -= nblock;
- if (i2 >= nblock) i2 -= nblock;
-
- (*budget)--;
- k -= 8;
- } while (k >= 0);
-
- return False;
-}
-#undef TIMES_8
-#undef TIMES_12
-
-/*---------------------------------------------*/
-/*
- * Knuth's increments seem to work better
- * than Incerpi-Sedgewick here. Possibly
- * because the number of elems to sort is
- * usually small, typically <= 20.
- */
-static
-const int32_t incs[14] = {
- 1, 4, 13, 40, 121, 364, 1093, 3280,
- 9841, 29524, 88573, 265720,
- 797161, 2391484
-};
-
-static
-void mainSimpleSort(uint32_t* ptr,
- uint8_t* block,
- uint16_t* quadrant,
- int32_t nblock,
- int32_t lo,
- int32_t hi,
- int32_t d,
- int32_t* budget)
-{
- int32_t i, j, h, bigN, hp;
- uint32_t v;
-
- bigN = hi - lo + 1;
- if (bigN < 2) return;
-
- hp = 0;
- while (incs[hp] < bigN) hp++;
- hp--;
-
- for (; hp >= 0; hp--) {
- h = incs[hp];
-
- i = lo + h;
- while (1) {
- /*-- copy 1 --*/
- if (i > hi) break;
- v = ptr[i];
- j = i;
- while (mainGtU(ptr[j-h]+d, v+d, block, quadrant, nblock, budget)) {
- ptr[j] = ptr[j-h];
- j = j - h;
- if (j <= (lo + h - 1)) break;
- }
- ptr[j] = v;
- i++;
-
-/* 1.5% overall speedup, +290 bytes */
-#if CONFIG_BZIP2_FEATURE_SPEED >= 3
- /*-- copy 2 --*/
- if (i > hi) break;
- v = ptr[i];
- j = i;
- while (mainGtU(ptr[j-h]+d, v+d, block, quadrant, nblock, budget)) {
- ptr[j] = ptr[j-h];
- j = j - h;
- if (j <= (lo + h - 1)) break;
- }
- ptr[j] = v;
- i++;
-
- /*-- copy 3 --*/
- if (i > hi) break;
- v = ptr[i];
- j = i;
- while (mainGtU(ptr[j-h]+d, v+d, block, quadrant, nblock, budget)) {
- ptr[j] = ptr[j-h];
- j = j - h;
- if (j <= (lo + h - 1)) break;
- }
- ptr[j] = v;
- i++;
-#endif
- if (*budget < 0) return;
- }
- }
-}
-
-
-/*---------------------------------------------*/
-/*
- * The following is an implementation of
- * an elegant 3-way quicksort for strings,
- * described in a paper "Fast Algorithms for
- * Sorting and Searching Strings", by Robert
- * Sedgewick and Jon L. Bentley.
- */
-
-static
-ALWAYS_INLINE
-uint8_t mmed3(uint8_t a, uint8_t b, uint8_t c)
-{
- uint8_t t;
- if (a > b) {
- t = a;
- a = b;
- b = t;
- };
- /* here b >= a */
- if (b > c) {
- b = c;
- if (a > b)
- b = a;
- }
- return b;
-}
-
-#define mpush(lz,hz,dz) \
-{ \
- stackLo[sp] = lz; \
- stackHi[sp] = hz; \
- stackD [sp] = dz; \
- sp++; \
-}
-
-#define mpop(lz,hz,dz) \
-{ \
- sp--; \
- lz = stackLo[sp]; \
- hz = stackHi[sp]; \
- dz = stackD [sp]; \
-}
-
-#define mnextsize(az) (nextHi[az] - nextLo[az])
-
-#define mnextswap(az,bz) \
-{ \
- int32_t tz; \
- tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \
- tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \
- tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; \
-}
-
-#define MAIN_QSORT_SMALL_THRESH 20
-#define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)
-#define MAIN_QSORT_STACK_SIZE 100
-
-static NOINLINE
-void mainQSort3(uint32_t* ptr,
- uint8_t* block,
- uint16_t* quadrant,
- int32_t nblock,
- int32_t loSt,
- int32_t hiSt,
- int32_t dSt,
- int32_t* budget)
-{
- int32_t unLo, unHi, ltLo, gtHi, n, m, med;
- int32_t sp, lo, hi, d;
-
- int32_t stackLo[MAIN_QSORT_STACK_SIZE];
- int32_t stackHi[MAIN_QSORT_STACK_SIZE];
- int32_t stackD [MAIN_QSORT_STACK_SIZE];
-
- int32_t nextLo[3];
- int32_t nextHi[3];
- int32_t nextD [3];
-
- sp = 0;
- mpush(loSt, hiSt, dSt);
-
- while (sp > 0) {
- AssertH(sp < MAIN_QSORT_STACK_SIZE - 2, 1001);
-
- mpop(lo, hi, d);
- if (hi - lo < MAIN_QSORT_SMALL_THRESH
- || d > MAIN_QSORT_DEPTH_THRESH
- ) {
- mainSimpleSort(ptr, block, quadrant, nblock, lo, hi, d, budget);
- if (*budget < 0)
- return;
- continue;
- }
- med = (int32_t) mmed3(block[ptr[lo ] + d],
- block[ptr[hi ] + d],
- block[ptr[(lo+hi) >> 1] + d]);
-
- unLo = ltLo = lo;
- unHi = gtHi = hi;
-
- while (1) {
- while (1) {
- if (unLo > unHi)
- break;
- n = ((int32_t)block[ptr[unLo]+d]) - med;
- if (n == 0) {
- mswap(ptr[unLo], ptr[ltLo]);
- ltLo++;
- unLo++;
- continue;
- };
- if (n > 0) break;
- unLo++;
- }
- while (1) {
- if (unLo > unHi)
- break;
- n = ((int32_t)block[ptr[unHi]+d]) - med;
- if (n == 0) {
- mswap(ptr[unHi], ptr[gtHi]);
- gtHi--;
- unHi--;
- continue;
- };
- if (n < 0) break;
- unHi--;
- }
- if (unLo > unHi)
- break;
- mswap(ptr[unLo], ptr[unHi]);
- unLo++;
- unHi--;
- }
-
- AssertD(unHi == unLo-1, "mainQSort3(2)");
-
- if (gtHi < ltLo) {
- mpush(lo, hi, d + 1);
- continue;
- }
-
- n = mmin(ltLo-lo, unLo-ltLo); mvswap(ptr, lo, unLo-n, n);
- m = mmin(hi-gtHi, gtHi-unHi); mvswap(ptr, unLo, hi-m+1, m);
-
- n = lo + unLo - ltLo - 1;
- m = hi - (gtHi - unHi) + 1;
-
- nextLo[0] = lo; nextHi[0] = n; nextD[0] = d;
- nextLo[1] = m; nextHi[1] = hi; nextD[1] = d;
- nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1;
-
- if (mnextsize(0) < mnextsize(1)) mnextswap(0, 1);
- if (mnextsize(1) < mnextsize(2)) mnextswap(1, 2);
- if (mnextsize(0) < mnextsize(1)) mnextswap(0, 1);
-
- AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)");
- AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)");
-
- mpush(nextLo[0], nextHi[0], nextD[0]);
- mpush(nextLo[1], nextHi[1], nextD[1]);
- mpush(nextLo[2], nextHi[2], nextD[2]);
- }
-}
-
-#undef mpush
-#undef mpop
-#undef mnextsize
-#undef mnextswap
-#undef MAIN_QSORT_SMALL_THRESH
-#undef MAIN_QSORT_DEPTH_THRESH
-#undef MAIN_QSORT_STACK_SIZE
-
-
-/*---------------------------------------------*/
-/* Pre:
- * nblock > N_OVERSHOOT
- * block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
- * ((uint8_t*)block32) [0 .. nblock-1] holds block
- * ptr exists for [0 .. nblock-1]
- *
- * Post:
- * ((uint8_t*)block32) [0 .. nblock-1] holds block
- * All other areas of block32 destroyed
- * ftab[0 .. 65536] destroyed
- * ptr [0 .. nblock-1] holds sorted order
- * if (*budget < 0), sorting was abandoned
- */
-
-#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
-#define SETMASK (1 << 21)
-#define CLEARMASK (~(SETMASK))
-
-static NOINLINE
-void mainSort(EState* state,
- uint32_t* ptr,
- uint8_t* block,
- uint16_t* quadrant,
- uint32_t* ftab,
- int32_t nblock,
- int32_t* budget)
-{
- int32_t i, j, k, ss, sb;
- uint8_t c1;
- int32_t numQSorted;
- uint16_t s;
- Bool bigDone[256];
- /* bbox: moved to EState to save stack
- int32_t runningOrder[256];
- int32_t copyStart[256];
- int32_t copyEnd [256];
- */
-#define runningOrder (state->mainSort__runningOrder)
-#define copyStart (state->mainSort__copyStart)
-#define copyEnd (state->mainSort__copyEnd)
-
- /*-- set up the 2-byte frequency table --*/
- /* was: for (i = 65536; i >= 0; i--) ftab[i] = 0; */
- memset(ftab, 0, 65537 * sizeof(ftab[0]));
-
- j = block[0] << 8;
- i = nblock - 1;
-/* 3%, +300 bytes */
-#if CONFIG_BZIP2_FEATURE_SPEED >= 2
- for (; i >= 3; i -= 4) {
- quadrant[i] = 0;
- j = (j >> 8) | (((uint16_t)block[i]) << 8);
- ftab[j]++;
- quadrant[i-1] = 0;
- j = (j >> 8) | (((uint16_t)block[i-1]) << 8);
- ftab[j]++;
- quadrant[i-2] = 0;
- j = (j >> 8) | (((uint16_t)block[i-2]) << 8);
- ftab[j]++;
- quadrant[i-3] = 0;
- j = (j >> 8) | (((uint16_t)block[i-3]) << 8);
- ftab[j]++;
- }
-#endif
- for (; i >= 0; i--) {
- quadrant[i] = 0;
- j = (j >> 8) | (((uint16_t)block[i]) << 8);
- ftab[j]++;
- }
-
- /*-- (emphasises close relationship of block & quadrant) --*/
- for (i = 0; i < BZ_N_OVERSHOOT; i++) {
- block [nblock+i] = block[i];
- quadrant[nblock+i] = 0;
- }
-
- /*-- Complete the initial radix sort --*/
- j = ftab[0]; /* bbox: optimized */
- for (i = 1; i <= 65536; i++) {
- j += ftab[i];
- ftab[i] = j;
- }
-
- s = block[0] << 8;
- i = nblock - 1;
-#if CONFIG_BZIP2_FEATURE_SPEED >= 2
- for (; i >= 3; i -= 4) {
- s = (s >> 8) | (block[i] << 8);
- j = ftab[s] - 1;
- ftab[s] = j;
- ptr[j] = i;
- s = (s >> 8) | (block[i-1] << 8);
- j = ftab[s] - 1;
- ftab[s] = j;
- ptr[j] = i-1;
- s = (s >> 8) | (block[i-2] << 8);
- j = ftab[s] - 1;
- ftab[s] = j;
- ptr[j] = i-2;
- s = (s >> 8) | (block[i-3] << 8);
- j = ftab[s] - 1;
- ftab[s] = j;
- ptr[j] = i-3;
- }
-#endif
- for (; i >= 0; i--) {
- s = (s >> 8) | (block[i] << 8);
- j = ftab[s] - 1;
- ftab[s] = j;
- ptr[j] = i;
- }
-
- /*
- * Now ftab contains the first loc of every small bucket.
- * Calculate the running order, from smallest to largest
- * big bucket.
- */
- for (i = 0; i <= 255; i++) {
- bigDone [i] = False;
- runningOrder[i] = i;
- }
-
- {
- int32_t vv;
- /* bbox: was: int32_t h = 1; */
- /* do h = 3 * h + 1; while (h <= 256); */
- uint32_t h = 364;
-
- do {
- /*h = h / 3;*/
- h = (h * 171) >> 9; /* bbox: fast h/3 */
- for (i = h; i <= 255; i++) {
- vv = runningOrder[i];
- j = i;
- while (BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv)) {
- runningOrder[j] = runningOrder[j-h];
- j = j - h;
- if (j <= (h - 1))
- goto zero;
- }
- zero:
- runningOrder[j] = vv;
- }
- } while (h != 1);
- }
-
- /*
- * The main sorting loop.
- */
-
- numQSorted = 0;
-
- for (i = 0; i <= 255; i++) {
-
- /*
- * Process big buckets, starting with the least full.
- * Basically this is a 3-step process in which we call
- * mainQSort3 to sort the small buckets [ss, j], but
- * also make a big effort to avoid the calls if we can.
- */
- ss = runningOrder[i];
-
- /*
- * Step 1:
- * Complete the big bucket [ss] by quicksorting
- * any unsorted small buckets [ss, j], for j != ss.
- * Hopefully previous pointer-scanning phases have already
- * completed many of the small buckets [ss, j], so
- * we don't have to sort them at all.
- */
- for (j = 0; j <= 255; j++) {
- if (j != ss) {
- sb = (ss << 8) + j;
- if (!(ftab[sb] & SETMASK)) {
- int32_t lo = ftab[sb] & CLEARMASK;
- int32_t hi = (ftab[sb+1] & CLEARMASK) - 1;
- if (hi > lo) {
- mainQSort3(
- ptr, block, quadrant, nblock,
- lo, hi, BZ_N_RADIX, budget
- );
- if (*budget < 0) return;
- numQSorted += (hi - lo + 1);
- }
- }
- ftab[sb] |= SETMASK;
- }
- }
-
- AssertH(!bigDone[ss], 1006);
-
- /*
- * Step 2:
- * Now scan this big bucket [ss] so as to synthesise the
- * sorted order for small buckets [t, ss] for all t,
- * including, magically, the bucket [ss,ss] too.
- * This will avoid doing Real Work in subsequent Step 1's.
- */
- {
- for (j = 0; j <= 255; j++) {
- copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK;
- copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
- }
- for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
- k = ptr[j] - 1;
- if (k < 0)
- k += nblock;
- c1 = block[k];
- if (!bigDone[c1])
- ptr[copyStart[c1]++] = k;
- }
- for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
- k = ptr[j]-1;
- if (k < 0)
- k += nblock;
- c1 = block[k];
- if (!bigDone[c1])
- ptr[copyEnd[c1]--] = k;
- }
- }
-
- /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1.
- * Necessity for this case is demonstrated by compressing
- * a sequence of approximately 48.5 million of character
- * 251; 1.0.0/1.0.1 will then die here. */
- AssertH((copyStart[ss]-1 == copyEnd[ss]) \
- || (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), 1007);
-
- for (j = 0; j <= 255; j++)
- ftab[(j << 8) + ss] |= SETMASK;
-
- /*
- * Step 3:
- * The [ss] big bucket is now done. Record this fact,
- * and update the quadrant descriptors. Remember to
- * update quadrants in the overshoot area too, if
- * necessary. The "if (i < 255)" test merely skips
- * this updating for the last bucket processed, since
- * updating for the last bucket is pointless.
- *
- * The quadrant array provides a way to incrementally
- * cache sort orderings, as they appear, so as to
- * make subsequent comparisons in fullGtU() complete
- * faster. For repetitive blocks this makes a big
- * difference (but not big enough to be able to avoid
- * the fallback sorting mechanism, exponential radix sort).
- *
- * The precise meaning is: at all times:
- *
- * for 0 <= i < nblock and 0 <= j <= nblock
- *
- * if block[i] != block[j],
- *
- * then the relative values of quadrant[i] and
- * quadrant[j] are meaningless.
- *
- * else {
- * if quadrant[i] < quadrant[j]
- * then the string starting at i lexicographically
- * precedes the string starting at j
- *
- * else if quadrant[i] > quadrant[j]
- * then the string starting at j lexicographically
- * precedes the string starting at i
- *
- * else
- * the relative ordering of the strings starting
- * at i and j has not yet been determined.
- * }
- */
- bigDone[ss] = True;
-
- if (i < 255) {
- int32_t bbStart = ftab[ss << 8] & CLEARMASK;
- int32_t bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
- int32_t shifts = 0;
-
- while ((bbSize >> shifts) > 65534) shifts++;
-
- for (j = bbSize-1; j >= 0; j--) {
- int32_t a2update = ptr[bbStart + j];
- uint16_t qVal = (uint16_t)(j >> shifts);
- quadrant[a2update] = qVal;
- if (a2update < BZ_N_OVERSHOOT)
- quadrant[a2update + nblock] = qVal;
- }
- AssertH(((bbSize-1) >> shifts) <= 65535, 1002);
- }
- }
-#undef runningOrder
-#undef copyStart
-#undef copyEnd
-}
-
-#undef BIGFREQ
-#undef SETMASK
-#undef CLEARMASK
-
-
-/*---------------------------------------------*/
-/* Pre:
- * nblock > 0
- * arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
- * ((uint8_t*)arr2)[0 .. nblock-1] holds block
- * arr1 exists for [0 .. nblock-1]
- *
- * Post:
- * ((uint8_t*)arr2) [0 .. nblock-1] holds block
- * All other areas of block destroyed
- * ftab[0 .. 65536] destroyed
- * arr1[0 .. nblock-1] holds sorted order
- */
-static NOINLINE
-void BZ2_blockSort(EState* s)
-{
- /* In original bzip2 1.0.4, it's a parameter, but 30
- * (which was the default) should work ok. */
- enum { wfact = 30 };
-
- uint32_t* ptr = s->ptr;
- uint8_t* block = s->block;
- uint32_t* ftab = s->ftab;
- int32_t nblock = s->nblock;
- uint16_t* quadrant;
- int32_t budget;
- int32_t i;
-
- if (nblock < 10000) {
- fallbackSort(s->arr1, s->arr2, ftab, nblock);
- } else {
- /* Calculate the location for quadrant, remembering to get
- * the alignment right. Assumes that &(block[0]) is at least
- * 2-byte aligned -- this should be ok since block is really
- * the first section of arr2.
- */
- i = nblock + BZ_N_OVERSHOOT;
- if (i & 1) i++;
- quadrant = (uint16_t*)(&(block[i]));
-
- /* (wfact-1) / 3 puts the default-factor-30
- * transition point at very roughly the same place as
- * with v0.1 and v0.9.0.
- * Not that it particularly matters any more, since the
- * resulting compressed stream is now the same regardless
- * of whether or not we use the main sort or fallback sort.
- */
- budget = nblock * ((wfact-1) / 3);
-
- mainSort(s, ptr, block, quadrant, ftab, nblock, &budget);
- if (budget < 0) {
- fallbackSort(s->arr1, s->arr2, ftab, nblock);
- }
- }
-
- s->origPtr = -1;
- for (i = 0; i < s->nblock; i++)
- if (ptr[i] == 0) {
- s->origPtr = i;
- break;
- };
-
- AssertH(s->origPtr != -1, 1003);
-}
-
-
-/*-------------------------------------------------------------*/
-/*--- end blocksort.c ---*/
-/*-------------------------------------------------------------*/