aboutsummaryrefslogtreecommitdiff
path: root/archival/libunarchive/decompress_bunzip2.c
diff options
context:
space:
mode:
authorDenys Vlasenko <vda.linux@googlemail.com>2010-11-03 02:38:31 +0100
committerDenys Vlasenko <vda.linux@googlemail.com>2010-11-03 02:38:31 +0100
commit833d4e7f84f59099ee66eabfa3457ebb7d37eaa8 (patch)
tree3be84e1049707ce8077291065fe3689497c69b9c /archival/libunarchive/decompress_bunzip2.c
parent5e9934028aa030312a1a2e2e32d5ceade8672beb (diff)
downloadbusybox-833d4e7f84f59099ee66eabfa3457ebb7d37eaa8.tar.gz
rename archival/libunarchive -> archival/libarchive; move bz/ into it
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Diffstat (limited to 'archival/libunarchive/decompress_bunzip2.c')
-rw-r--r--archival/libunarchive/decompress_bunzip2.c822
1 files changed, 0 insertions, 822 deletions
diff --git a/archival/libunarchive/decompress_bunzip2.c b/archival/libunarchive/decompress_bunzip2.c
deleted file mode 100644
index 15f08a60e..000000000
--- a/archival/libunarchive/decompress_bunzip2.c
+++ /dev/null
@@ -1,822 +0,0 @@
-/* vi: set sw=4 ts=4: */
-/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
-
- Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
- which also acknowledges contributions by Mike Burrows, David Wheeler,
- Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
- Robert Sedgewick, and Jon L. Bentley.
-
- Licensed under GPLv2 or later, see file LICENSE in this source tree.
-*/
-
-/*
- Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
-
- More efficient reading of Huffman codes, a streamlined read_bunzip()
- function, and various other tweaks. In (limited) tests, approximately
- 20% faster than bzcat on x86 and about 10% faster on arm.
-
- Note that about 2/3 of the time is spent in read_bunzip() reversing
- the Burrows-Wheeler transformation. Much of that time is delay
- resulting from cache misses.
-
- (2010 update by vda: profiled "bzcat <84mbyte.bz2 >/dev/null"
- on x86-64 CPU with L2 > 1M: get_next_block is hotter than read_bunzip:
- %time seconds calls function
- 71.01 12.69 444 get_next_block
- 28.65 5.12 93065 read_bunzip
- 00.22 0.04 7736490 get_bits
- 00.11 0.02 47 dealloc_bunzip
- 00.00 0.00 93018 full_write
- ...)
-
-
- I would ask that anyone benefiting from this work, especially those
- using it in commercial products, consider making a donation to my local
- non-profit hospice organization (www.hospiceacadiana.com) in the name of
- the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
-
- Manuel
- */
-
-#include "libbb.h"
-#include "unarchive.h"
-
-/* Constants for Huffman coding */
-#define MAX_GROUPS 6
-#define GROUP_SIZE 50 /* 64 would have been more efficient */
-#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
-#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
-#define SYMBOL_RUNA 0
-#define SYMBOL_RUNB 1
-
-/* Status return values */
-#define RETVAL_OK 0
-#define RETVAL_LAST_BLOCK (-1)
-#define RETVAL_NOT_BZIP_DATA (-2)
-#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
-#define RETVAL_SHORT_WRITE (-4)
-#define RETVAL_DATA_ERROR (-5)
-#define RETVAL_OUT_OF_MEMORY (-6)
-#define RETVAL_OBSOLETE_INPUT (-7)
-
-/* Other housekeeping constants */
-#define IOBUF_SIZE 4096
-
-/* This is what we know about each Huffman coding group */
-struct group_data {
- /* We have an extra slot at the end of limit[] for a sentinel value. */
- int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
- int minLen, maxLen;
-};
-
-/* Structure holding all the housekeeping data, including IO buffers and
- * memory that persists between calls to bunzip
- * Found the most used member:
- * cat this_file.c | sed -e 's/"/ /g' -e "s/'/ /g" | xargs -n1 \
- * | grep 'bd->' | sed 's/^.*bd->/bd->/' | sort | $PAGER
- * and moved it (inbufBitCount) to offset 0.
- */
-struct bunzip_data {
- /* I/O tracking data (file handles, buffers, positions, etc.) */
- unsigned inbufBitCount, inbufBits;
- int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/;
- uint8_t *inbuf /*,*outbuf*/;
-
- /* State for interrupting output loop */
- int writeCopies, writePos, writeRunCountdown, writeCount;
- int writeCurrent; /* actually a uint8_t */
-
- /* The CRC values stored in the block header and calculated from the data */
- uint32_t headerCRC, totalCRC, writeCRC;
-
- /* Intermediate buffer and its size (in bytes) */
- uint32_t *dbuf;
- unsigned dbufSize;
-
- /* For I/O error handling */
- jmp_buf jmpbuf;
-
- /* Big things go last (register-relative addressing can be larger for big offsets) */
- uint32_t crc32Table[256];
- uint8_t selectors[32768]; /* nSelectors=15 bits */
- struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
-};
-/* typedef struct bunzip_data bunzip_data; -- done in .h file */
-
-
-/* Return the next nnn bits of input. All reads from the compressed input
- are done through this function. All reads are big endian */
-static unsigned get_bits(bunzip_data *bd, int bits_wanted)
-{
- unsigned bits = 0;
- /* Cache bd->inbufBitCount in a CPU register (hopefully): */
- int bit_count = bd->inbufBitCount;
-
- /* If we need to get more data from the byte buffer, do so. (Loop getting
- one byte at a time to enforce endianness and avoid unaligned access.) */
- while (bit_count < bits_wanted) {
-
- /* If we need to read more data from file into byte buffer, do so */
- if (bd->inbufPos == bd->inbufCount) {
- /* if "no input fd" case: in_fd == -1, read fails, we jump */
- bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE);
- if (bd->inbufCount <= 0)
- longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF);
- bd->inbufPos = 0;
- }
-
- /* Avoid 32-bit overflow (dump bit buffer to top of output) */
- if (bit_count >= 24) {
- bits = bd->inbufBits & ((1 << bit_count) - 1);
- bits_wanted -= bit_count;
- bits <<= bits_wanted;
- bit_count = 0;
- }
-
- /* Grab next 8 bits of input from buffer. */
- bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
- bit_count += 8;
- }
-
- /* Calculate result */
- bit_count -= bits_wanted;
- bd->inbufBitCount = bit_count;
- bits |= (bd->inbufBits >> bit_count) & ((1 << bits_wanted) - 1);
-
- return bits;
-}
-
-/* Unpacks the next block and sets up for the inverse Burrows-Wheeler step. */
-static int get_next_block(bunzip_data *bd)
-{
- struct group_data *hufGroup;
- int dbufCount, dbufSize, groupCount, *base, *limit, selector,
- i, j, t, runPos, symCount, symTotal, nSelectors, byteCount[256];
- int runCnt = runCnt; /* for compiler */
- uint8_t uc, symToByte[256], mtfSymbol[256], *selectors;
- uint32_t *dbuf;
- unsigned origPtr;
-
- dbuf = bd->dbuf;
- dbufSize = bd->dbufSize;
- selectors = bd->selectors;
-
-/* In bbox, we are ok with aborting through setjmp which is set up in start_bunzip */
-#if 0
- /* Reset longjmp I/O error handling */
- i = setjmp(bd->jmpbuf);
- if (i) return i;
-#endif
-
- /* Read in header signature and CRC, then validate signature.
- (last block signature means CRC is for whole file, return now) */
- i = get_bits(bd, 24);
- j = get_bits(bd, 24);
- bd->headerCRC = get_bits(bd, 32);
- if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
- if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
-
- /* We can add support for blockRandomised if anybody complains. There was
- some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
- it didn't actually work. */
- if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT;
- origPtr = get_bits(bd, 24);
- if ((int)origPtr > dbufSize) return RETVAL_DATA_ERROR;
-
- /* mapping table: if some byte values are never used (encoding things
- like ascii text), the compression code removes the gaps to have fewer
- symbols to deal with, and writes a sparse bitfield indicating which
- values were present. We make a translation table to convert the symbols
- back to the corresponding bytes. */
- symTotal = 0;
- i = 0;
- t = get_bits(bd, 16);
- do {
- if (t & (1 << 15)) {
- unsigned inner_map = get_bits(bd, 16);
- do {
- if (inner_map & (1 << 15))
- symToByte[symTotal++] = i;
- inner_map <<= 1;
- i++;
- } while (i & 15);
- i -= 16;
- }
- t <<= 1;
- i += 16;
- } while (i < 256);
-
- /* How many different Huffman coding groups does this block use? */
- groupCount = get_bits(bd, 3);
- if (groupCount < 2 || groupCount > MAX_GROUPS)
- return RETVAL_DATA_ERROR;
-
- /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
- group. Read in the group selector list, which is stored as MTF encoded
- bit runs. (MTF=Move To Front, as each value is used it's moved to the
- start of the list.) */
- for (i = 0; i < groupCount; i++)
- mtfSymbol[i] = i;
- nSelectors = get_bits(bd, 15);
- if (!nSelectors)
- return RETVAL_DATA_ERROR;
- for (i = 0; i < nSelectors; i++) {
- uint8_t tmp_byte;
- /* Get next value */
- int n = 0;
- while (get_bits(bd, 1)) {
- if (n >= groupCount) return RETVAL_DATA_ERROR;
- n++;
- }
- /* Decode MTF to get the next selector */
- tmp_byte = mtfSymbol[n];
- while (--n >= 0)
- mtfSymbol[n + 1] = mtfSymbol[n];
- mtfSymbol[0] = selectors[i] = tmp_byte;
- }
-
- /* Read the Huffman coding tables for each group, which code for symTotal
- literal symbols, plus two run symbols (RUNA, RUNB) */
- symCount = symTotal + 2;
- for (j = 0; j < groupCount; j++) {
- uint8_t length[MAX_SYMBOLS];
- /* 8 bits is ALMOST enough for temp[], see below */
- unsigned temp[MAX_HUFCODE_BITS+1];
- int minLen, maxLen, pp, len_m1;
-
- /* Read Huffman code lengths for each symbol. They're stored in
- a way similar to mtf; record a starting value for the first symbol,
- and an offset from the previous value for every symbol after that.
- (Subtracting 1 before the loop and then adding it back at the end is
- an optimization that makes the test inside the loop simpler: symbol
- length 0 becomes negative, so an unsigned inequality catches it.) */
- len_m1 = get_bits(bd, 5) - 1;
- for (i = 0; i < symCount; i++) {
- for (;;) {
- int two_bits;
- if ((unsigned)len_m1 > (MAX_HUFCODE_BITS-1))
- return RETVAL_DATA_ERROR;
-
- /* If first bit is 0, stop. Else second bit indicates whether
- to increment or decrement the value. Optimization: grab 2
- bits and unget the second if the first was 0. */
- two_bits = get_bits(bd, 2);
- if (two_bits < 2) {
- bd->inbufBitCount++;
- break;
- }
-
- /* Add one if second bit 1, else subtract 1. Avoids if/else */
- len_m1 += (((two_bits+1) & 2) - 1);
- }
-
- /* Correct for the initial -1, to get the final symbol length */
- length[i] = len_m1 + 1;
- }
-
- /* Find largest and smallest lengths in this group */
- minLen = maxLen = length[0];
- for (i = 1; i < symCount; i++) {
- if (length[i] > maxLen) maxLen = length[i];
- else if (length[i] < minLen) minLen = length[i];
- }
-
- /* Calculate permute[], base[], and limit[] tables from length[].
- *
- * permute[] is the lookup table for converting Huffman coded symbols
- * into decoded symbols. base[] is the amount to subtract from the
- * value of a Huffman symbol of a given length when using permute[].
- *
- * limit[] indicates the largest numerical value a symbol with a given
- * number of bits can have. This is how the Huffman codes can vary in
- * length: each code with a value>limit[length] needs another bit.
- */
- hufGroup = bd->groups + j;
- hufGroup->minLen = minLen;
- hufGroup->maxLen = maxLen;
-
- /* Note that minLen can't be smaller than 1, so we adjust the base
- and limit array pointers so we're not always wasting the first
- entry. We do this again when using them (during symbol decoding). */
- base = hufGroup->base - 1;
- limit = hufGroup->limit - 1;
-
- /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
- pp = 0;
- for (i = minLen; i <= maxLen; i++) {
- int k;
- temp[i] = limit[i] = 0;
- for (k = 0; k < symCount; k++)
- if (length[k] == i)
- hufGroup->permute[pp++] = k;
- }
-
- /* Count symbols coded for at each bit length */
- /* NB: in pathological cases, temp[8] can end ip being 256.
- * That's why uint8_t is too small for temp[]. */
- for (i = 0; i < symCount; i++) temp[length[i]]++;
-
- /* Calculate limit[] (the largest symbol-coding value at each bit
- * length, which is (previous limit<<1)+symbols at this level), and
- * base[] (number of symbols to ignore at each bit length, which is
- * limit minus the cumulative count of symbols coded for already). */
- pp = t = 0;
- for (i = minLen; i < maxLen;) {
- unsigned temp_i = temp[i];
-
- pp += temp_i;
-
- /* We read the largest possible symbol size and then unget bits
- after determining how many we need, and those extra bits could
- be set to anything. (They're noise from future symbols.) At
- each level we're really only interested in the first few bits,
- so here we set all the trailing to-be-ignored bits to 1 so they
- don't affect the value>limit[length] comparison. */
- limit[i] = (pp << (maxLen - i)) - 1;
- pp <<= 1;
- t += temp_i;
- base[++i] = pp - t;
- }
- limit[maxLen] = pp + temp[maxLen] - 1;
- limit[maxLen+1] = INT_MAX; /* Sentinel value for reading next sym. */
- base[minLen] = 0;
- }
-
- /* We've finished reading and digesting the block header. Now read this
- block's Huffman coded symbols from the file and undo the Huffman coding
- and run length encoding, saving the result into dbuf[dbufCount++] = uc */
-
- /* Initialize symbol occurrence counters and symbol Move To Front table */
- /*memset(byteCount, 0, sizeof(byteCount)); - smaller, but slower */
- for (i = 0; i < 256; i++) {
- byteCount[i] = 0;
- mtfSymbol[i] = (uint8_t)i;
- }
-
- /* Loop through compressed symbols. */
-
- runPos = dbufCount = selector = 0;
- for (;;) {
- int nextSym;
-
- /* Fetch next Huffman coding group from list. */
- symCount = GROUP_SIZE - 1;
- if (selector >= nSelectors) return RETVAL_DATA_ERROR;
- hufGroup = bd->groups + selectors[selector++];
- base = hufGroup->base - 1;
- limit = hufGroup->limit - 1;
-
- continue_this_group:
- /* Read next Huffman-coded symbol. */
-
- /* Note: It is far cheaper to read maxLen bits and back up than it is
- to read minLen bits and then add additional bit at a time, testing
- as we go. Because there is a trailing last block (with file CRC),
- there is no danger of the overread causing an unexpected EOF for a
- valid compressed file.
- */
- if (1) {
- /* As a further optimization, we do the read inline
- (falling back to a call to get_bits if the buffer runs dry).
- */
- int new_cnt;
- while ((new_cnt = bd->inbufBitCount - hufGroup->maxLen) < 0) {
- /* bd->inbufBitCount < hufGroup->maxLen */
- if (bd->inbufPos == bd->inbufCount) {
- nextSym = get_bits(bd, hufGroup->maxLen);
- goto got_huff_bits;
- }
- bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
- bd->inbufBitCount += 8;
- };
- bd->inbufBitCount = new_cnt; /* "bd->inbufBitCount -= hufGroup->maxLen;" */
- nextSym = (bd->inbufBits >> new_cnt) & ((1 << hufGroup->maxLen) - 1);
- got_huff_bits: ;
- } else { /* unoptimized equivalent */
- nextSym = get_bits(bd, hufGroup->maxLen);
- }
- /* Figure how many bits are in next symbol and unget extras */
- i = hufGroup->minLen;
- while (nextSym > limit[i]) ++i;
- j = hufGroup->maxLen - i;
- if (j < 0)
- return RETVAL_DATA_ERROR;
- bd->inbufBitCount += j;
-
- /* Huffman decode value to get nextSym (with bounds checking) */
- nextSym = (nextSym >> j) - base[i];
- if ((unsigned)nextSym >= MAX_SYMBOLS)
- return RETVAL_DATA_ERROR;
- nextSym = hufGroup->permute[nextSym];
-
- /* We have now decoded the symbol, which indicates either a new literal
- byte, or a repeated run of the most recent literal byte. First,
- check if nextSym indicates a repeated run, and if so loop collecting
- how many times to repeat the last literal. */
- if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */
-
- /* If this is the start of a new run, zero out counter */
- if (runPos == 0) {
- runPos = 1;
- runCnt = 0;
- }
-
- /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
- each bit position, add 1 or 2 instead. For example,
- 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
- You can make any bit pattern that way using 1 less symbol than
- the basic or 0/1 method (except all bits 0, which would use no
- symbols, but a run of length 0 doesn't mean anything in this
- context). Thus space is saved. */
- runCnt += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
- if (runPos < dbufSize) runPos <<= 1;
- goto end_of_huffman_loop;
- }
-
- /* When we hit the first non-run symbol after a run, we now know
- how many times to repeat the last literal, so append that many
- copies to our buffer of decoded symbols (dbuf) now. (The last
- literal used is the one at the head of the mtfSymbol array.) */
- if (runPos != 0) {
- uint8_t tmp_byte;
- if (dbufCount + runCnt >= dbufSize) return RETVAL_DATA_ERROR;
- tmp_byte = symToByte[mtfSymbol[0]];
- byteCount[tmp_byte] += runCnt;
- while (--runCnt >= 0) dbuf[dbufCount++] = (uint32_t)tmp_byte;
- runPos = 0;
- }
-
- /* Is this the terminating symbol? */
- if (nextSym > symTotal) break;
-
- /* At this point, nextSym indicates a new literal character. Subtract
- one to get the position in the MTF array at which this literal is
- currently to be found. (Note that the result can't be -1 or 0,
- because 0 and 1 are RUNA and RUNB. But another instance of the
- first symbol in the mtf array, position 0, would have been handled
- as part of a run above. Therefore 1 unused mtf position minus
- 2 non-literal nextSym values equals -1.) */
- if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR;
- i = nextSym - 1;
- uc = mtfSymbol[i];
-
- /* Adjust the MTF array. Since we typically expect to move only a
- * small number of symbols, and are bound by 256 in any case, using
- * memmove here would typically be bigger and slower due to function
- * call overhead and other assorted setup costs. */
- do {
- mtfSymbol[i] = mtfSymbol[i-1];
- } while (--i);
- mtfSymbol[0] = uc;
- uc = symToByte[uc];
-
- /* We have our literal byte. Save it into dbuf. */
- byteCount[uc]++;
- dbuf[dbufCount++] = (uint32_t)uc;
-
- /* Skip group initialization if we're not done with this group. Done
- * this way to avoid compiler warning. */
- end_of_huffman_loop:
- if (--symCount >= 0) goto continue_this_group;
- }
-
- /* At this point, we've read all the Huffman-coded symbols (and repeated
- runs) for this block from the input stream, and decoded them into the
- intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
- Now undo the Burrows-Wheeler transform on dbuf.
- See http://dogma.net/markn/articles/bwt/bwt.htm
- */
-
- /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
- j = 0;
- for (i = 0; i < 256; i++) {
- int tmp_count = j + byteCount[i];
- byteCount[i] = j;
- j = tmp_count;
- }
-
- /* Figure out what order dbuf would be in if we sorted it. */
- for (i = 0; i < dbufCount; i++) {
- uint8_t tmp_byte = (uint8_t)dbuf[i];
- int tmp_count = byteCount[tmp_byte];
- dbuf[tmp_count] |= (i << 8);
- byteCount[tmp_byte] = tmp_count + 1;
- }
-
- /* Decode first byte by hand to initialize "previous" byte. Note that it
- doesn't get output, and if the first three characters are identical
- it doesn't qualify as a run (hence writeRunCountdown=5). */
- if (dbufCount) {
- uint32_t tmp;
- if ((int)origPtr >= dbufCount) return RETVAL_DATA_ERROR;
- tmp = dbuf[origPtr];
- bd->writeCurrent = (uint8_t)tmp;
- bd->writePos = (tmp >> 8);
- bd->writeRunCountdown = 5;
- }
- bd->writeCount = dbufCount;
-
- return RETVAL_OK;
-}
-
-/* Undo Burrows-Wheeler transform on intermediate buffer to produce output.
- If start_bunzip was initialized with out_fd=-1, then up to len bytes of
- data are written to outbuf. Return value is number of bytes written or
- error (all errors are negative numbers). If out_fd!=-1, outbuf and len
- are ignored, data is written to out_fd and return is RETVAL_OK or error.
-
- NB: read_bunzip returns < 0 on error, or the number of *unfilled* bytes
- in outbuf. IOW: on EOF returns len ("all bytes are not filled"), not 0.
- (Why? This allows to get rid of one local variable)
-*/
-int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
-{
- const uint32_t *dbuf;
- int pos, current, previous;
- uint32_t CRC;
-
- /* If we already have error/end indicator, return it */
- if (bd->writeCount < 0)
- return bd->writeCount;
-
- dbuf = bd->dbuf;
-
- /* Register-cached state (hopefully): */
- pos = bd->writePos;
- current = bd->writeCurrent;
- CRC = bd->writeCRC; /* small loss on x86-32 (not enough regs), win on x86-64 */
-
- /* We will always have pending decoded data to write into the output
- buffer unless this is the very first call (in which case we haven't
- Huffman-decoded a block into the intermediate buffer yet). */
- if (bd->writeCopies) {
-
- dec_writeCopies:
- /* Inside the loop, writeCopies means extra copies (beyond 1) */
- --bd->writeCopies;
-
- /* Loop outputting bytes */
- for (;;) {
-
- /* If the output buffer is full, save cached state and return */
- if (--len < 0) {
- /* Unlikely branch.
- * Use of "goto" instead of keeping code here
- * helps compiler to realize this. */
- goto outbuf_full;
- }
-
- /* Write next byte into output buffer, updating CRC */
- *outbuf++ = current;
- CRC = (CRC << 8) ^ bd->crc32Table[(CRC >> 24) ^ current];
-
- /* Loop now if we're outputting multiple copies of this byte */
- if (bd->writeCopies) {
- /* Unlikely branch */
- /*--bd->writeCopies;*/
- /*continue;*/
- /* Same, but (ab)using other existing --writeCopies operation
- * (and this if() compiles into just test+branch pair): */
- goto dec_writeCopies;
- }
- decode_next_byte:
- if (--bd->writeCount < 0)
- break; /* input block is fully consumed, need next one */
-
- /* Follow sequence vector to undo Burrows-Wheeler transform */
- previous = current;
- pos = dbuf[pos];
- current = (uint8_t)pos;
- pos >>= 8;
-
- /* After 3 consecutive copies of the same byte, the 4th
- * is a repeat count. We count down from 4 instead
- * of counting up because testing for non-zero is faster */
- if (--bd->writeRunCountdown != 0) {
- if (current != previous)
- bd->writeRunCountdown = 4;
- } else {
- /* Unlikely branch */
- /* We have a repeated run, this byte indicates the count */
- bd->writeCopies = current;
- current = previous;
- bd->writeRunCountdown = 5;
-
- /* Sometimes there are just 3 bytes (run length 0) */
- if (!bd->writeCopies) goto decode_next_byte;
-
- /* Subtract the 1 copy we'd output anyway to get extras */
- --bd->writeCopies;
- }
- } /* for(;;) */
-
- /* Decompression of this input block completed successfully */
- bd->writeCRC = CRC = ~CRC;
- bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ CRC;
-
- /* If this block had a CRC error, force file level CRC error */
- if (CRC != bd->headerCRC) {
- bd->totalCRC = bd->headerCRC + 1;
- return RETVAL_LAST_BLOCK;
- }
- }
-
- /* Refill the intermediate buffer by Huffman-decoding next block of input */
- {
- int r = get_next_block(bd);
- if (r) { /* error/end */
- bd->writeCount = r;
- return (r != RETVAL_LAST_BLOCK) ? r : len;
- }
- }
-
- CRC = ~0;
- pos = bd->writePos;
- current = bd->writeCurrent;
- goto decode_next_byte;
-
- outbuf_full:
- /* Output buffer is full, save cached state and return */
- bd->writePos = pos;
- bd->writeCurrent = current;
- bd->writeCRC = CRC;
-
- bd->writeCopies++;
-
- return 0;
-}
-
-/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
- a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
- ignored, and data is read from file handle into temporary buffer. */
-
-/* Because bunzip2 is used for help text unpacking, and because bb_show_usage()
- should work for NOFORK applets too, we must be extremely careful to not leak
- any allocations! */
-int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd,
- const void *inbuf, int len)
-{
- bunzip_data *bd;
- unsigned i;
- enum {
- BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0',
- h0 = ('h' << 8) + '0',
- };
-
- /* Figure out how much data to allocate */
- i = sizeof(bunzip_data);
- if (in_fd != -1) i += IOBUF_SIZE;
-
- /* Allocate bunzip_data. Most fields initialize to zero. */
- bd = *bdp = xzalloc(i);
-
- /* Setup input buffer */
- bd->in_fd = in_fd;
- if (-1 == in_fd) {
- /* in this case, bd->inbuf is read-only */
- bd->inbuf = (void*)inbuf; /* cast away const-ness */
- } else {
- bd->inbuf = (uint8_t*)(bd + 1);
- memcpy(bd->inbuf, inbuf, len);
- }
- bd->inbufCount = len;
-
- /* Init the CRC32 table (big endian) */
- crc32_filltable(bd->crc32Table, 1);
-
- /* Setup for I/O error handling via longjmp */
- i = setjmp(bd->jmpbuf);
- if (i) return i;
-
- /* Ensure that file starts with "BZh['1'-'9']." */
- /* Update: now caller verifies 1st two bytes, makes .gz/.bz2
- * integration easier */
- /* was: */
- /* i = get_bits(bd, 32); */
- /* if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; */
- i = get_bits(bd, 16);
- if ((unsigned)(i - h0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA;
-
- /* Fourth byte (ascii '1'-'9') indicates block size in units of 100k of
- uncompressed data. Allocate intermediate buffer for block. */
- /* bd->dbufSize = 100000 * (i - BZh0); */
- bd->dbufSize = 100000 * (i - h0);
-
- /* Cannot use xmalloc - may leak bd in NOFORK case! */
- bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(bd->dbuf[0]));
- if (!bd->dbuf) {
- free(bd);
- xfunc_die();
- }
- return RETVAL_OK;
-}
-
-void FAST_FUNC dealloc_bunzip(bunzip_data *bd)
-{
- free(bd->dbuf);
- free(bd);
-}
-
-
-/* Decompress src_fd to dst_fd. Stops at end of bzip data, not end of file. */
-IF_DESKTOP(long long) int FAST_FUNC
-unpack_bz2_stream(int src_fd, int dst_fd)
-{
- IF_DESKTOP(long long total_written = 0;)
- bunzip_data *bd;
- char *outbuf;
- int i;
- unsigned len;
-
- outbuf = xmalloc(IOBUF_SIZE);
- len = 0;
- while (1) { /* "Process one BZ... stream" loop */
-
- i = start_bunzip(&bd, src_fd, outbuf + 2, len);
-
- if (i == 0) {
- while (1) { /* "Produce some output bytes" loop */
- i = read_bunzip(bd, outbuf, IOBUF_SIZE);
- if (i < 0) /* error? */
- break;
- i = IOBUF_SIZE - i; /* number of bytes produced */
- if (i == 0) /* EOF? */
- break;
- if (i != full_write(dst_fd, outbuf, i)) {
- bb_error_msg("short write");
- i = RETVAL_SHORT_WRITE;
- goto release_mem;
- }
- IF_DESKTOP(total_written += i;)
- }
- }
-
- if (i != RETVAL_LAST_BLOCK) {
- bb_error_msg("bunzip error %d", i);
- break;
- }
- if (bd->headerCRC != bd->totalCRC) {
- bb_error_msg("CRC error");
- break;
- }
-
- /* Successfully unpacked one BZ stream */
- i = RETVAL_OK;
-
- /* Do we have "BZ..." after last processed byte?
- * pbzip2 (parallelized bzip2) produces such files.
- */
- len = bd->inbufCount - bd->inbufPos;
- memcpy(outbuf, &bd->inbuf[bd->inbufPos], len);
- if (len < 2) {
- if (safe_read(src_fd, outbuf + len, 2 - len) != 2 - len)
- break;
- len = 2;
- }
- if (*(uint16_t*)outbuf != BZIP2_MAGIC) /* "BZ"? */
- break;
- dealloc_bunzip(bd);
- len -= 2;
- }
-
- release_mem:
- dealloc_bunzip(bd);
- free(outbuf);
-
- return i ? i : IF_DESKTOP(total_written) + 0;
-}
-
-IF_DESKTOP(long long) int FAST_FUNC
-unpack_bz2_stream_prime(int src_fd, int dst_fd)
-{
- uint16_t magic2;
- xread(src_fd, &magic2, 2);
- if (magic2 != BZIP2_MAGIC) {
- bb_error_msg_and_die("invalid magic");
- }
- return unpack_bz2_stream(src_fd, dst_fd);
-}
-
-#ifdef TESTING
-
-static char *const bunzip_errors[] = {
- NULL, "Bad file checksum", "Not bzip data",
- "Unexpected input EOF", "Unexpected output EOF", "Data error",
- "Out of memory", "Obsolete (pre 0.9.5) bzip format not supported"
-};
-
-/* Dumb little test thing, decompress stdin to stdout */
-int main(int argc, char **argv)
-{
- int i;
- char c;
-
- int i = unpack_bz2_stream_prime(0, 1);
- if (i < 0)
- fprintf(stderr, "%s\n", bunzip_errors[-i]);
- else if (read(STDIN_FILENO, &c, 1))
- fprintf(stderr, "Trailing garbage ignored\n");
- return -i;
-}
-#endif