/* * Small lzma deflate implementation. * Copyright (C) 2006 Aurelien Jacobs * * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/) * Copyright (C) 1999-2005 Igor Pavlov * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "libbb.h" #include "unarchive.h" #include "rangecoder.h" typedef struct { uint8_t pos; uint32_t dict_size; uint64_t dst_size; } __attribute__ ((packed)) lzma_header_t; #define LZMA_BASE_SIZE 1846 #define LZMA_LIT_SIZE 768 #define LZMA_NUM_POS_BITS_MAX 4 #define LZMA_LEN_NUM_LOW_BITS 3 #define LZMA_LEN_NUM_MID_BITS 3 #define LZMA_LEN_NUM_HIGH_BITS 8 #define LZMA_LEN_CHOICE 0 #define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1) #define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1) #define LZMA_LEN_MID (LZMA_LEN_LOW \ + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS))) #define LZMA_LEN_HIGH (LZMA_LEN_MID \ +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS))) #define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS)) #define LZMA_NUM_STATES 12 #define LZMA_NUM_LIT_STATES 7 #define LZMA_START_POS_MODEL_INDEX 4 #define LZMA_END_POS_MODEL_INDEX 14 #define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1)) #define LZMA_NUM_POS_SLOT_BITS 6 #define LZMA_NUM_LEN_TO_POS_STATES 4 #define LZMA_NUM_ALIGN_BITS 4 #define LZMA_MATCH_MIN_LEN 2 #define LZMA_IS_MATCH 0 #define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES <= (9 * 5 * 5)) bb_error_msg_and_die("bad header"); mi = header.pos / 9; lc = header.pos % 9; pb = mi / 5; lp = mi % 5; pos_state_mask = (1 << pb) - 1; literal_pos_mask = (1 << lp) - 1; #if BB_BIG_ENDIAN header.dict_size = bswap_32(header.dict_size); header.dst_size = bswap_64(header.dst_size); #endif if (header.dict_size == 0) header.dict_size = 1; buffer = xmalloc(MIN(header.dst_size, header.dict_size)); num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)); p = xmalloc(num_probs * sizeof(*p)); num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp)); for (i = 0; i < num_probs; i++) p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1; rc_init(&rc, src_fd, 0x10000); while (global_pos + buffer_pos < header.dst_size) { int pos_state = (buffer_pos + global_pos) & pos_state_mask; prob = p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + pos_state; if (rc_is_bit_0(&rc, prob)) { mi = 1; rc_update_bit_0(&rc, prob); prob = (p + LZMA_LITERAL + (LZMA_LIT_SIZE * ((((buffer_pos + global_pos) & literal_pos_mask) << lc) + (previous_byte >> (8 - lc))))); if (state >= LZMA_NUM_LIT_STATES) { int match_byte; pos = buffer_pos - rep0; while (pos >= header.dict_size) pos += header.dict_size; match_byte = buffer[pos]; do { int bit; match_byte <<= 1; bit = match_byte & 0x100; prob_lit = prob + 0x100 + bit + mi; if (rc_get_bit(&rc, prob_lit, &mi)) { if (!bit) break; } else { if (bit) break; } } while (mi < 0x100); } while (mi < 0x100) { prob_lit = prob + mi; rc_get_bit(&rc, prob_lit, &mi); } previous_byte = (uint8_t) mi; buffer[buffer_pos++] = previous_byte; if (buffer_pos == header.dict_size) { buffer_pos = 0; global_pos += header.dict_size; write(dst_fd, buffer, header.dict_size); } if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; } else { int offset; uint16_t *prob_len; rc_update_bit_1(&rc, prob); prob = p + LZMA_IS_REP + state; if (rc_is_bit_0(&rc, prob)) { rc_update_bit_0(&rc, prob); rep3 = rep2; rep2 = rep1; rep1 = rep0; state = state < LZMA_NUM_LIT_STATES ? 0 : 3; prob = p + LZMA_LEN_CODER; } else { rc_update_bit_1(&rc, prob); prob = p + LZMA_IS_REP_G0 + state; if (rc_is_bit_0(&rc, prob)) { rc_update_bit_0(&rc, prob); prob = (p + LZMA_IS_REP_0_LONG + (state << LZMA_NUM_POS_BITS_MAX) + pos_state); if (rc_is_bit_0(&rc, prob)) { rc_update_bit_0(&rc, prob); state = state < LZMA_NUM_LIT_STATES ? 9 : 11; pos = buffer_pos - rep0; while (pos >= header.dict_size) pos += header.dict_size; previous_byte = buffer[pos]; buffer[buffer_pos++] = previous_byte; if (buffer_pos == header.dict_size) { buffer_pos = 0; global_pos += header.dict_size; write(dst_fd, buffer, header.dict_size); } continue; } else { rc_update_bit_1(&rc, prob); } } else { uint32_t distance; rc_update_bit_1(&rc, prob); prob = p + LZMA_IS_REP_G1 + state; if (rc_is_bit_0(&rc, prob)) { rc_update_bit_0(&rc, prob); distance = rep1; } else { rc_update_bit_1(&rc, prob); prob = p + LZMA_IS_REP_G2 + state; if (rc_is_bit_0(&rc, prob)) { rc_update_bit_0(&rc, prob); distance = rep2; } else { rc_update_bit_1(&rc, prob); distance = rep3; rep3 = rep2; } rep2 = rep1; } rep1 = rep0; rep0 = distance; } state = state < LZMA_NUM_LIT_STATES ? 8 : 11; prob = p + LZMA_REP_LEN_CODER; } prob_len = prob + LZMA_LEN_CHOICE; if (rc_is_bit_0(&rc, prob_len)) { rc_update_bit_0(&rc, prob_len); prob_len = (prob + LZMA_LEN_LOW + (pos_state << LZMA_LEN_NUM_LOW_BITS)); offset = 0; num_bits = LZMA_LEN_NUM_LOW_BITS; } else { rc_update_bit_1(&rc, prob_len); prob_len = prob + LZMA_LEN_CHOICE_2; if (rc_is_bit_0(&rc, prob_len)) { rc_update_bit_0(&rc, prob_len); prob_len = (prob + LZMA_LEN_MID + (pos_state << LZMA_LEN_NUM_MID_BITS)); offset = 1 << LZMA_LEN_NUM_LOW_BITS; num_bits = LZMA_LEN_NUM_MID_BITS; } else { rc_update_bit_1(&rc, prob_len); prob_len = prob + LZMA_LEN_HIGH; offset = ((1 << LZMA_LEN_NUM_LOW_BITS) + (1 << LZMA_LEN_NUM_MID_BITS)); num_bits = LZMA_LEN_NUM_HIGH_BITS; } } rc_bit_tree_decode(&rc, prob_len, num_bits, &len); len += offset; if (state < 4) { int pos_slot; state += LZMA_NUM_LIT_STATES; prob = p + LZMA_POS_SLOT + ((len < LZMA_NUM_LEN_TO_POS_STATES ? len : LZMA_NUM_LEN_TO_POS_STATES - 1) << LZMA_NUM_POS_SLOT_BITS); rc_bit_tree_decode(&rc, prob, LZMA_NUM_POS_SLOT_BITS, &pos_slot); if (pos_slot >= LZMA_START_POS_MODEL_INDEX) { num_bits = (pos_slot >> 1) - 1; rep0 = 2 | (pos_slot & 1); if (pos_slot < LZMA_END_POS_MODEL_INDEX) { rep0 <<= num_bits; prob = p + LZMA_SPEC_POS + rep0 - pos_slot - 1; } else { num_bits -= LZMA_NUM_ALIGN_BITS; while (num_bits--) rep0 = (rep0 << 1) | rc_direct_bit(&rc); prob = p + LZMA_ALIGN; rep0 <<= LZMA_NUM_ALIGN_BITS; num_bits = LZMA_NUM_ALIGN_BITS; } i = 1; mi = 1; while (num_bits--) { if (rc_get_bit(&rc, prob + mi, &mi)) rep0 |= i; i <<= 1; } } else rep0 = pos_slot; if (++rep0 == 0) break; } len += LZMA_MATCH_MIN_LEN; do { pos = buffer_pos - rep0; while (pos >= header.dict_size) pos += header.dict_size; previous_byte = buffer[pos]; buffer[buffer_pos++] = previous_byte; if (buffer_pos == header.dict_size) { buffer_pos = 0; global_pos += header.dict_size; write(dst_fd, buffer, header.dict_size); } len--; } while (len != 0 && buffer_pos < header.dst_size); } } write(dst_fd, buffer, buffer_pos); rc_free(&rc); return 0; } /* vi:set ts=4: */