/* vi: set sw=4 ts=4: */ /* * Mini insmod implementation for busybox * * Copyright (C) 1999,2000 by Lineo, inc. * Written by Erik Andersen * and Ron Alder * * Based almost entirely on the Linux modutils-2.3.11 implementation. * Copyright 1996, 1997 Linux International. * New implementation contributed by Richard Henderson * Based on original work by Bjorn Ekwall * Restructured (and partly rewritten) by: * Björn Ekwall February 1999 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "internal.h" #include #include #include #include #include #include #include #include #include #include //---------------------------------------------------------------------------- //--------modutils module.h, lines 45-242 //---------------------------------------------------------------------------- /* Definitions for the Linux module syscall interface. Copyright 1996, 1997 Linux International. Contributed by Richard Henderson This file is part of the Linux modutils. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef MODUTILS_MODULE_H #define MODUTILS_MODULE_H 1 #ident "$Id: insmod.c,v 1.15 2000/07/11 17:52:22 andersen Exp $" /* This file contains the structures used by the 2.0 and 2.1 kernels. We do not use the kernel headers directly because we do not wish to be dependant on a particular kernel version to compile insmod. */ /*======================================================================*/ /* The structures used by Linux 2.0. */ /* The symbol format used by get_kernel_syms(2). */ struct old_kernel_sym { unsigned long value; char name[60]; }; struct old_module_ref { unsigned long module; /* kernel addresses */ unsigned long next; }; struct old_module_symbol { unsigned long addr; unsigned long name; }; struct old_symbol_table { int size; /* total, including string table!!! */ int n_symbols; int n_refs; struct old_module_symbol symbol[0]; /* actual size defined by n_symbols */ struct old_module_ref ref[0]; /* actual size defined by n_refs */ }; struct old_mod_routines { unsigned long init; unsigned long cleanup; }; struct old_module { unsigned long next; unsigned long ref; /* the list of modules that refer to me */ unsigned long symtab; unsigned long name; int size; /* size of module in pages */ unsigned long addr; /* address of module */ int state; unsigned long cleanup; /* cleanup routine */ }; /* Sent to init_module(2) or'ed into the code size parameter. */ #define OLD_MOD_AUTOCLEAN 0x40000000 /* big enough, but no sign problems... */ int get_kernel_syms(struct old_kernel_sym *); int old_sys_init_module(const char *name, char *code, unsigned codesize, struct old_mod_routines *, struct old_symbol_table *); /*======================================================================*/ /* For sizeof() which are related to the module platform and not to the environment isnmod is running in, use sizeof_xx instead of sizeof(xx). */ #define tgt_sizeof_char sizeof(char) #define tgt_sizeof_short sizeof(short) #define tgt_sizeof_int sizeof(int) #define tgt_sizeof_long sizeof(long) #define tgt_sizeof_char_p sizeof(char *) #define tgt_sizeof_void_p sizeof(void *) #define tgt_long long #if defined(__sparc__) && !defined(__sparc_v9__) && defined(ARCH_sparc64) #undef tgt_sizeof_long #undef tgt_sizeof_char_p #undef tgt_sizeof_void_p #undef tgt_long #define tgt_sizeof_long 8 #define tgt_sizeof_char_p 8 #define tgt_sizeof_void_p 8 #define tgt_long long long #endif /*======================================================================*/ /* The structures used in Linux 2.1. */ /* Note: new_module_symbol does not use tgt_long intentionally */ struct new_module_symbol { unsigned long value; unsigned long name; }; struct new_module_persist; struct new_module_ref { unsigned tgt_long dep; /* kernel addresses */ unsigned tgt_long ref; unsigned tgt_long next_ref; }; struct new_module { unsigned tgt_long size_of_struct; /* == sizeof(module) */ unsigned tgt_long next; unsigned tgt_long name; unsigned tgt_long size; tgt_long usecount; unsigned tgt_long flags; /* AUTOCLEAN et al */ unsigned nsyms; unsigned ndeps; unsigned tgt_long syms; unsigned tgt_long deps; unsigned tgt_long refs; unsigned tgt_long init; unsigned tgt_long cleanup; unsigned tgt_long ex_table_start; unsigned tgt_long ex_table_end; #ifdef __alpha__ unsigned tgt_long gp; #endif /* Everything after here is extension. */ unsigned tgt_long persist_start; unsigned tgt_long persist_end; unsigned tgt_long can_unload; unsigned tgt_long runsize; }; struct new_module_info { unsigned long addr; unsigned long size; unsigned long flags; long usecount; }; /* Bits of module.flags. */ #define NEW_MOD_RUNNING 1 #define NEW_MOD_DELETED 2 #define NEW_MOD_AUTOCLEAN 4 #define NEW_MOD_VISITED 8 #define NEW_MOD_USED_ONCE 16 int new_sys_init_module(const char *name, const struct new_module *); int query_module(const char *name, int which, void *buf, size_t bufsize, size_t *ret); /* Values for query_module's which. */ #define QM_MODULES 1 #define QM_DEPS 2 #define QM_REFS 3 #define QM_SYMBOLS 4 #define QM_INFO 5 /*======================================================================*/ /* The system calls unchanged between 2.0 and 2.1. */ unsigned long create_module(const char *, size_t); int delete_module(const char *); #endif /* module.h */ //---------------------------------------------------------------------------- //--------end of modutils module.h //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- //--------modutils obj.h, lines 253-462 //---------------------------------------------------------------------------- /* Elf object file loading and relocation routines. Copyright 1996, 1997 Linux International. Contributed by Richard Henderson This file is part of the Linux modutils. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef MODUTILS_OBJ_H #define MODUTILS_OBJ_H 1 #ident "$Id: insmod.c,v 1.15 2000/07/11 17:52:22 andersen Exp $" /* The relocatable object is manipulated using elfin types. */ #include #include /* Machine-specific elf macros for i386 et al. */ #define ELFCLASSM ELFCLASS32 #define ELFDATAM ELFDATA2LSB #define MATCH_MACHINE(x) (x == EM_386 || x == EM_486) #define SHT_RELM SHT_REL #define Elf32_RelM Elf32_Rel #ifndef ElfW # if ELFCLASSM == ELFCLASS32 # define ElfW(x) Elf32_ ## x # define ELFW(x) ELF32_ ## x # else # define ElfW(x) Elf64_ ## x # define ELFW(x) ELF64_ ## x # endif #endif /* For some reason this is missing from libc5. */ #ifndef ELF32_ST_INFO # define ELF32_ST_INFO(bind, type) (((bind) << 4) + ((type) & 0xf)) #endif #ifndef ELF64_ST_INFO # define ELF64_ST_INFO(bind, type) (((bind) << 4) + ((type) & 0xf)) #endif struct obj_string_patch; struct obj_symbol_patch; struct obj_section { ElfW(Shdr) header; const char *name; char *contents; struct obj_section *load_next; int idx; }; struct obj_symbol { struct obj_symbol *next; /* hash table link */ const char *name; unsigned long value; unsigned long size; int secidx; /* the defining section index/module */ int info; int ksymidx; /* for export to the kernel symtab */ int referenced; /* actually used in the link */ }; /* Hardcode the hash table size. We shouldn't be needing so many symbols that we begin to degrade performance, and we get a big win by giving the compiler a constant divisor. */ #define HASH_BUCKETS 521 struct obj_file { ElfW(Ehdr) header; ElfW(Addr) baseaddr; struct obj_section **sections; struct obj_section *load_order; struct obj_section **load_order_search_start; struct obj_string_patch *string_patches; struct obj_symbol_patch *symbol_patches; int (*symbol_cmp)(const char *, const char *); unsigned long (*symbol_hash)(const char *); unsigned long local_symtab_size; struct obj_symbol **local_symtab; struct obj_symbol *symtab[HASH_BUCKETS]; }; enum obj_reloc { obj_reloc_ok, obj_reloc_overflow, obj_reloc_dangerous, obj_reloc_unhandled }; struct obj_string_patch { struct obj_string_patch *next; int reloc_secidx; ElfW(Addr) reloc_offset; ElfW(Addr) string_offset; }; struct obj_symbol_patch { struct obj_symbol_patch *next; int reloc_secidx; ElfW(Addr) reloc_offset; struct obj_symbol *sym; }; /* Generic object manipulation routines. */ unsigned long obj_elf_hash(const char *); unsigned long obj_elf_hash_n(const char *, unsigned long len); struct obj_symbol *obj_add_symbol (struct obj_file *f, const char *name, unsigned long symidx, int info, int secidx, ElfW(Addr) value, unsigned long size); struct obj_symbol *obj_find_symbol (struct obj_file *f, const char *name); ElfW(Addr) obj_symbol_final_value(struct obj_file *f, struct obj_symbol *sym); void obj_set_symbol_compare(struct obj_file *f, int (*cmp)(const char *, const char *), unsigned long (*hash)(const char *)); struct obj_section *obj_find_section (struct obj_file *f, const char *name); void obj_insert_section_load_order (struct obj_file *f, struct obj_section *sec); struct obj_section *obj_create_alloced_section (struct obj_file *f, const char *name, unsigned long align, unsigned long size); struct obj_section *obj_create_alloced_section_first (struct obj_file *f, const char *name, unsigned long align, unsigned long size); void *obj_extend_section (struct obj_section *sec, unsigned long more); int obj_string_patch(struct obj_file *f, int secidx, ElfW(Addr) offset, const char *string); int obj_symbol_patch(struct obj_file *f, int secidx, ElfW(Addr) offset, struct obj_symbol *sym); int obj_check_undefineds(struct obj_file *f); void obj_allocate_commons(struct obj_file *f); unsigned long obj_load_size (struct obj_file *f); int obj_relocate (struct obj_file *f, ElfW(Addr) base); struct obj_file *obj_load(FILE *f); int obj_create_image (struct obj_file *f, char *image); /* Architecture specific manipulation routines. */ struct obj_file *arch_new_file (void); struct obj_section *arch_new_section (void); struct obj_symbol *arch_new_symbol (void); enum obj_reloc arch_apply_relocation (struct obj_file *f, struct obj_section *targsec, struct obj_section *symsec, struct obj_symbol *sym, ElfW(RelM) *rel, ElfW(Addr) value); int arch_create_got (struct obj_file *f); struct new_module; int arch_init_module (struct obj_file *f, struct new_module *); #endif /* obj.h */ //---------------------------------------------------------------------------- //--------end of modutils obj.h //---------------------------------------------------------------------------- #define _PATH_MODULES "/lib/modules" #define STRVERSIONLEN 32 #if !defined(BB_FEATURE_INSMOD_NEW_KERNEL) && !defined(BB_FEATURE_INSMOD_OLD_KERNEL) #error "Must have ether BB_FEATURE_INSMOD_NEW_KERNEL or BB_FEATURE_INSMOD_OLD_KERNEL defined" #endif /*======================================================================*/ int flag_force_load = 0; int flag_autoclean = 0; int flag_verbose = 0; int flag_export = 1; /*======================================================================*/ struct i386_got_entry { int offset; unsigned offset_done:1; unsigned reloc_done:1; }; struct i386_file { struct obj_file root; struct obj_section *got; }; struct i386_symbol { struct obj_symbol root; struct i386_got_entry gotent; }; struct external_module { const char *name; ElfW(Addr) addr; int used; size_t nsyms; struct new_module_symbol *syms; }; struct new_module_symbol *ksyms; size_t nksyms; struct external_module *ext_modules; int n_ext_modules; int n_ext_modules_used; /* Some firendly syscalls to cheer everyone's day... */ #define __NR_new_sys_init_module __NR_init_module _syscall2(int, new_sys_init_module, const char *, name, const struct new_module *, info) #define __NR_old_sys_init_module __NR_init_module _syscall5(int, old_sys_init_module, const char *, name, char *, code, unsigned, codesize, struct old_mod_routines *, routines, struct old_symbol_table *, symtab) #ifndef __NR_query_module #define __NR_query_module 167 #endif _syscall5(int, query_module, const char *, name, int, which, void *, buf, size_t, bufsize, size_t*, ret); #ifndef BB_RMMOD _syscall1(int, delete_module, const char *, name) #else extern int delete_module(const char *); #endif #if defined(__i386__) || defined(__m68k__) || defined(__arm__) /* Jump through hoops to fixup error return codes */ #define __NR__create_module __NR_create_module static inline _syscall2(long, _create_module, const char *, name, size_t, size) unsigned long create_module(const char *name, size_t size) { long ret = _create_module(name, size); if (ret == -1 && errno > 125) { ret = -errno; errno = 0; } return ret; } #else _syscall2(unsigned long, create_module, const char *, name, size_t, size) #endif static char m_filename[BUFSIZ + 1] = "\0"; static char m_fullName[BUFSIZ + 1] = "\0"; static const char insmod_usage[] = "insmod [OPTION]... MODULE [symbol=value]...\n" #ifndef BB_FEATURE_TRIVIAL_HELP "\nLoads the specified kernel modules into the kernel.\n\n" "Options:\n" "\t-f\tForce module to load into the wrong kernel version.\n" "\t-k\tMake module autoclean-able.\n" "\t-v\tverbose output\n" "\t-x\tdo not export externs\n" #endif ; /*======================================================================*/ void *xrealloc(void *old, size_t size) { void *ptr = realloc(old, size); if (!ptr) { perror("Out of memory"); exit(1); } return ptr; } static int findNamedModule(const char *fileName, struct stat *statbuf, void *userDate) { char *fullName = (char *) userDate; if (fullName[0] == '\0') return (FALSE); else { char *tmp = strrchr(fileName, '/'); if (tmp == NULL) tmp = (char *) fileName; else tmp++; if (check_wildcard_match(tmp, fullName) == TRUE) { /* Stop searching if we find a match */ memcpy(m_filename, fileName, strlen(fileName)); return (FALSE); } } return (TRUE); } /*======================================================================*/ struct obj_file *arch_new_file(void) { struct i386_file *f; f = xmalloc(sizeof(*f)); f->got = NULL; return &f->root; } struct obj_section *arch_new_section(void) { return xmalloc(sizeof(struct obj_section)); } struct obj_symbol *arch_new_symbol(void) { struct i386_symbol *sym; sym = xmalloc(sizeof(*sym)); memset(&sym->gotent, 0, sizeof(sym->gotent)); return &sym->root; } enum obj_reloc arch_apply_relocation(struct obj_file *f, struct obj_section *targsec, struct obj_section *symsec, struct obj_symbol *sym, Elf32_Rel * rel, Elf32_Addr v) { struct i386_file *ifile = (struct i386_file *) f; struct i386_symbol *isym = (struct i386_symbol *) sym; Elf32_Addr *loc = (Elf32_Addr *) (targsec->contents + rel->r_offset); Elf32_Addr dot = targsec->header.sh_addr + rel->r_offset; Elf32_Addr got = ifile->got ? ifile->got->header.sh_addr : 0; enum obj_reloc ret = obj_reloc_ok; switch (ELF32_R_TYPE(rel->r_info)) { case R_386_NONE: break; case R_386_32: *loc += v; break; case R_386_PLT32: case R_386_PC32: *loc += v - dot; break; case R_386_GLOB_DAT: case R_386_JMP_SLOT: *loc = v; break; case R_386_RELATIVE: *loc += f->baseaddr; break; case R_386_GOTPC: assert(got != 0); *loc += got - dot; break; case R_386_GOT32: assert(isym != NULL); if (!isym->gotent.reloc_done) { isym->gotent.reloc_done = 1; *(Elf32_Addr *) (ifile->got->contents + isym->gotent.offset) = v; } *loc += isym->gotent.offset; break; case R_386_GOTOFF: assert(got != 0); *loc += v - got; break; default: ret = obj_reloc_unhandled; break; } return ret; } int arch_create_got(struct obj_file *f) { struct i386_file *ifile = (struct i386_file *) f; int i, n, offset = 0, gotneeded = 0; n = ifile->root.header.e_shnum; for (i = 0; i < n; ++i) { struct obj_section *relsec, *symsec, *strsec; Elf32_Rel *rel, *relend; Elf32_Sym *symtab; const char *strtab; relsec = ifile->root.sections[i]; if (relsec->header.sh_type != SHT_REL) continue; symsec = ifile->root.sections[relsec->header.sh_link]; strsec = ifile->root.sections[symsec->header.sh_link]; rel = (Elf32_Rel *) relsec->contents; relend = rel + (relsec->header.sh_size / sizeof(Elf32_Rel)); symtab = (Elf32_Sym *) symsec->contents; strtab = (const char *) strsec->contents; for (; rel < relend; ++rel) { Elf32_Sym *extsym; struct i386_symbol *intsym; const char *name; switch (ELF32_R_TYPE(rel->r_info)) { case R_386_GOTPC: case R_386_GOTOFF: gotneeded = 1; default: continue; case R_386_GOT32: break; } extsym = &symtab[ELF32_R_SYM(rel->r_info)]; if (extsym->st_name) name = strtab + extsym->st_name; else name = f->sections[extsym->st_shndx]->name; intsym = (struct i386_symbol *) obj_find_symbol(&ifile->root, name); if (!intsym->gotent.offset_done) { intsym->gotent.offset_done = 1; intsym->gotent.offset = offset; offset += 4; } } } if (offset > 0 || gotneeded) ifile->got = obj_create_alloced_section(&ifile->root, ".got", 4, offset); return 1; } int arch_init_module(struct obj_file *f, struct new_module *mod) { return 1; } /*======================================================================*/ /* Standard ELF hash function. */ inline unsigned long obj_elf_hash_n(const char *name, unsigned long n) { unsigned long h = 0; unsigned long g; unsigned char ch; while (n > 0) { ch = *name++; h = (h << 4) + ch; if ((g = (h & 0xf0000000)) != 0) { h ^= g >> 24; h &= ~g; } n--; } return h; } unsigned long obj_elf_hash(const char *name) { return obj_elf_hash_n(name, strlen(name)); } #ifdef BB_FEATURE_INSMOD_VERSION_CHECKING /* Get the kernel version in the canonical integer form. */ static int get_kernel_version(char str[STRVERSIONLEN]) { struct utsname uts_info; char *p, *q; int a, b, c; if (uname(&uts_info) < 0) return -1; strncpy(str, uts_info.release, STRVERSIONLEN); p = uts_info.release; a = strtoul(p, &p, 10); if (*p != '.') return -1; b = strtoul(p + 1, &p, 10); if (*p != '.') return -1; c = strtoul(p + 1, &q, 10); if (p + 1 == q) return -1; return a << 16 | b << 8 | c; } /* String comparison for non-co-versioned kernel and module. */ static int ncv_strcmp(const char *a, const char *b) { size_t alen = strlen(a), blen = strlen(b); if (blen == alen + 10 && b[alen] == '_' && b[alen + 1] == 'R') return strncmp(a, b, alen); else if (alen == blen + 10 && a[blen] == '_' && a[blen + 1] == 'R') return strncmp(a, b, blen); else return strcmp(a, b); } /* String hashing for non-co-versioned kernel and module. Here we are simply forced to drop the crc from the hash. */ static unsigned long ncv_symbol_hash(const char *str) { size_t len = strlen(str); if (len > 10 && str[len - 10] == '_' && str[len - 9] == 'R') len -= 10; return obj_elf_hash_n(str, len); } void obj_set_symbol_compare(struct obj_file *f, int (*cmp) (const char *, const char *), unsigned long (*hash) (const char *)) { if (cmp) f->symbol_cmp = cmp; if (hash) { struct obj_symbol *tmptab[HASH_BUCKETS], *sym, *next; int i; f->symbol_hash = hash; memcpy(tmptab, f->symtab, sizeof(tmptab)); memset(f->symtab, 0, sizeof(f->symtab)); for (i = 0; i < HASH_BUCKETS; ++i) for (sym = tmptab[i]; sym; sym = next) { unsigned long h = hash(sym->name) % HASH_BUCKETS; next = sym->next; sym->next = f->symtab[h]; f->symtab[h] = sym; } } } #endif /* BB_FEATURE_INSMOD_VERSION_CHECKING */ struct obj_symbol *obj_add_symbol(struct obj_file *f, const char *name, unsigned long symidx, int info, int secidx, ElfW(Addr) value, unsigned long size) { struct obj_symbol *sym; unsigned long hash = f->symbol_hash(name) % HASH_BUCKETS; int n_type = ELFW(ST_TYPE) (info); int n_binding = ELFW(ST_BIND) (info); for (sym = f->symtab[hash]; sym; sym = sym->next) if (f->symbol_cmp(sym->name, name) == 0) { int o_secidx = sym->secidx; int o_info = sym->info; int o_type = ELFW(ST_TYPE) (o_info); int o_binding = ELFW(ST_BIND) (o_info); /* A redefinition! Is it legal? */ if (secidx == SHN_UNDEF) return sym; else if (o_secidx == SHN_UNDEF) goto found; else if (n_binding == STB_GLOBAL && o_binding == STB_LOCAL) { /* Cope with local and global symbols of the same name in the same object file, as might have been created by ld -r. The only reason locals are now seen at this level at all is so that we can do semi-sensible things with parameters. */ struct obj_symbol *nsym, **p; nsym = arch_new_symbol(); nsym->next = sym->next; nsym->ksymidx = -1; /* Excise the old (local) symbol from the hash chain. */ for (p = &f->symtab[hash]; *p != sym; p = &(*p)->next) continue; *p = sym = nsym; goto found; } else if (n_binding == STB_LOCAL) { /* Another symbol of the same name has already been defined. Just add this to the local table. */ sym = arch_new_symbol(); sym->next = NULL; sym->ksymidx = -1; f->local_symtab[symidx] = sym; goto found; } else if (n_binding == STB_WEAK) return sym; else if (o_binding == STB_WEAK) goto found; /* Don't unify COMMON symbols with object types the programmer doesn't expect. */ else if (secidx == SHN_COMMON && (o_type == STT_NOTYPE || o_type == STT_OBJECT)) return sym; else if (o_secidx == SHN_COMMON && (n_type == STT_NOTYPE || n_type == STT_OBJECT)) goto found; else { /* Don't report an error if the symbol is coming from the kernel or some external module. */ if (secidx <= SHN_HIRESERVE) fprintf(stderr, "%s multiply defined\n", name); return sym; } } /* Completely new symbol. */ sym = arch_new_symbol(); sym->next = f->symtab[hash]; f->symtab[hash] = sym; sym->ksymidx = -1; if (ELFW(ST_BIND) (info) == STB_LOCAL) f->local_symtab[symidx] = sym; found: sym->name = name; sym->value = value; sym->size = size; sym->secidx = secidx; sym->info = info; return sym; } struct obj_symbol *obj_find_symbol(struct obj_file *f, const char *name) { struct obj_symbol *sym; unsigned long hash = f->symbol_hash(name) % HASH_BUCKETS; for (sym = f->symtab[hash]; sym; sym = sym->next) if (f->symbol_cmp(sym->name, name) == 0) return sym; return NULL; } ElfW(Addr) obj_symbol_final_value(struct obj_file * f, struct obj_symbol * sym) { if (sym) { if (sym->secidx >= SHN_LORESERVE) return sym->value; return sym->value + f->sections[sym->secidx]->header.sh_addr; } else { /* As a special case, a NULL sym has value zero. */ return 0; } } struct obj_section *obj_find_section(struct obj_file *f, const char *name) { int i, n = f->header.e_shnum; for (i = 0; i < n; ++i) if (strcmp(f->sections[i]->name, name) == 0) return f->sections[i]; return NULL; } static int obj_load_order_prio(struct obj_section *a) { unsigned long af, ac; af = a->header.sh_flags; ac = 0; if (a->name[0] != '.' || strlen(a->name) != 10 || strcmp(a->name + 5, ".init")) ac |= 32; if (af & SHF_ALLOC) ac |= 16; if (!(af & SHF_WRITE)) ac |= 8; if (af & SHF_EXECINSTR) ac |= 4; if (a->header.sh_type != SHT_NOBITS) ac |= 2; return ac; } void obj_insert_section_load_order(struct obj_file *f, struct obj_section *sec) { struct obj_section **p; int prio = obj_load_order_prio(sec); for (p = f->load_order_search_start; *p; p = &(*p)->load_next) if (obj_load_order_prio(*p) < prio) break; sec->load_next = *p; *p = sec; } struct obj_section *obj_create_alloced_section(struct obj_file *f, const char *name, unsigned long align, unsigned long size) { int newidx = f->header.e_shnum++; struct obj_section *sec; f->sections = xrealloc(f->sections, (newidx + 1) * sizeof(sec)); f->sections[newidx] = sec = arch_new_section(); memset(sec, 0, sizeof(*sec)); sec->header.sh_type = SHT_PROGBITS; sec->header.sh_flags = SHF_WRITE | SHF_ALLOC; sec->header.sh_size = size; sec->header.sh_addralign = align; sec->name = name; sec->idx = newidx; if (size) sec->contents = xmalloc(size); obj_insert_section_load_order(f, sec); return sec; } struct obj_section *obj_create_alloced_section_first(struct obj_file *f, const char *name, unsigned long align, unsigned long size) { int newidx = f->header.e_shnum++; struct obj_section *sec; f->sections = xrealloc(f->sections, (newidx + 1) * sizeof(sec)); f->sections[newidx] = sec = arch_new_section(); memset(sec, 0, sizeof(*sec)); sec->header.sh_type = SHT_PROGBITS; sec->header.sh_flags = SHF_WRITE | SHF_ALLOC; sec->header.sh_size = size; sec->header.sh_addralign = align; sec->name = name; sec->idx = newidx; if (size) sec->contents = xmalloc(size); sec->load_next = f->load_order; f->load_order = sec; if (f->load_order_search_start == &f->load_order) f->load_order_search_start = &sec->load_next; return sec; } void *obj_extend_section(struct obj_section *sec, unsigned long more) { unsigned long oldsize = sec->header.sh_size; sec->contents = xrealloc(sec->contents, sec->header.sh_size += more); return sec->contents + oldsize; } /* Conditionally add the symbols from the given symbol set to the new module. */ static int add_symbols_from( struct obj_file *f, int idx, struct new_module_symbol *syms, size_t nsyms) { struct new_module_symbol *s; size_t i; int used = 0; for (i = 0, s = syms; i < nsyms; ++i, ++s) { /* Only add symbols that are already marked external. If we override locals we may cause problems for argument initialization. We will also create a false dependency on the module. */ struct obj_symbol *sym; sym = obj_find_symbol(f, (char *) s->name); if (sym && !ELFW(ST_BIND) (sym->info) == STB_LOCAL) { sym = obj_add_symbol(f, (char *) s->name, -1, ELFW(ST_INFO) (STB_GLOBAL, STT_NOTYPE), idx, s->value, 0); /* Did our symbol just get installed? If so, mark the module as "used". */ if (sym->secidx == idx) used = 1; } } return used; } static void add_kernel_symbols(struct obj_file *f) { struct external_module *m; size_t i, nused = 0; /* Add module symbols first. */ for (i = 0, m = ext_modules; i < n_ext_modules; ++i, ++m) if (m->nsyms && add_symbols_from(f, SHN_HIRESERVE + 2 + i, m->syms, m->nsyms)) m->used = 1, ++nused; n_ext_modules_used = nused; /* And finally the symbols from the kernel proper. */ if (nksyms) add_symbols_from(f, SHN_HIRESERVE + 1, ksyms, nksyms); } static char *get_modinfo_value(struct obj_file *f, const char *key) { struct obj_section *sec; char *p, *v, *n, *ep; size_t klen = strlen(key); sec = obj_find_section(f, ".modinfo"); if (sec == NULL) return NULL; p = sec->contents; ep = p + sec->header.sh_size; while (p < ep) { v = strchr(p, '='); n = strchr(p, '\0'); if (v) { if (v - p == klen && strncmp(p, key, klen) == 0) return v + 1; } else { if (n - p == klen && strcmp(p, key) == 0) return n; } p = n + 1; } return NULL; } /*======================================================================*/ /* Functions relating to module loading in pre 2.1 kernels. */ static int old_process_module_arguments(struct obj_file *f, int argc, char **argv) { while (argc > 0) { char *p, *q; struct obj_symbol *sym; int *loc; p = *argv; if ((q = strchr(p, '=')) == NULL) { argc--; continue; } *q++ = '\0'; sym = obj_find_symbol(f, p); /* Also check that the parameter was not resolved from the kernel. */ if (sym == NULL || sym->secidx > SHN_HIRESERVE) { fprintf(stderr, "symbol for parameter %s not found\n", p); return 0; } loc = (int *) (f->sections[sym->secidx]->contents + sym->value); /* Do C quoting if we begin with a ". */ if (*q == '"') { char *r, *str; str = alloca(strlen(q)); for (r = str, q++; *q != '"'; ++q, ++r) { if (*q == '\0') { fprintf(stderr, "improperly terminated string argument for %s\n", p); return 0; } else if (*q == '\\') switch (*++q) { case 'a': *r = '\a'; break; case 'b': *r = '\b'; break; case 'e': *r = '\033'; break; case 'f': *r = '\f'; break; case 'n': *r = '\n'; break; case 'r': *r = '\r'; break; case 't': *r = '\t'; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { int c = *q - '0'; if (q[1] >= '0' && q[1] <= '7') { c = (c * 8) + *++q - '0'; if (q[1] >= '0' && q[1] <= '7') c = (c * 8) + *++q - '0'; } *r = c; } break; default: *r = *q; break; } else *r = *q; } *r = '\0'; obj_string_patch(f, sym->secidx, sym->value, str); } else if (*q >= '0' && *q <= '9') { do *loc++ = strtoul(q, &q, 0); while (*q++ == ','); } else { char *contents = f->sections[sym->secidx]->contents; char *loc = contents + sym->value; char *r; /* To search for commas */ /* Break the string with comas */ while ((r = strchr(q, ',')) != (char *) NULL) { *r++ = '\0'; obj_string_patch(f, sym->secidx, loc - contents, q); loc += sizeof(char *); q = r; } /* last part */ obj_string_patch(f, sym->secidx, loc - contents, q); } argc--, argv++; } return 1; } #ifdef BB_FEATURE_INSMOD_VERSION_CHECKING static int old_is_module_checksummed(struct obj_file *f) { return obj_find_symbol(f, "Using_Versions") != NULL; } /* Get the module's kernel version in the canonical integer form. */ static int old_get_module_version(struct obj_file *f, char str[STRVERSIONLEN]) { struct obj_symbol *sym; char *p, *q; int a, b, c; sym = obj_find_symbol(f, "kernel_version"); if (sym == NULL) return -1; p = f->sections[sym->secidx]->contents + sym->value; strncpy(str, p, STRVERSIONLEN); a = strtoul(p, &p, 10); if (*p != '.') return -1; b = strtoul(p + 1, &p, 10); if (*p != '.') return -1; c = strtoul(p + 1, &q, 10); if (p + 1 == q) return -1; return a << 16 | b << 8 | c; } #endif /* BB_FEATURE_INSMOD_VERSION_CHECKING */ #ifdef BB_FEATURE_INSMOD_OLD_KERNEL /* Fetch all the symbols and divvy them up as appropriate for the modules. */ static int old_get_kernel_symbols(void) { struct old_kernel_sym *ks, *k; struct new_module_symbol *s; struct external_module *mod; int nks, nms, nmod, i; nks = get_kernel_syms(NULL); if (nks < 0) { errorMsg("get_kernel_syms: %s: %s", m_name, strerror(errno)); return 0; } ks = k = xmalloc(nks * sizeof(*ks)); if (get_kernel_syms(ks) != nks) { perror("inconsistency with get_kernel_syms -- is someone else " "playing with modules?"); free(ks); return 0; } /* Collect the module information. */ mod = NULL; nmod = -1; while (k->name[0] == '#' && k->name[1]) { struct old_kernel_sym *k2; struct new_module_symbol *s; /* Find out how many symbols this module has. */ for (k2 = k + 1; k2->name[0] != '#'; ++k2) continue; nms = k2 - k - 1; mod = xrealloc(mod, (++nmod + 1) * sizeof(*mod)); mod[nmod].name = k->name + 1; mod[nmod].addr = k->value; mod[nmod].used = 0; mod[nmod].nsyms = nms; mod[nmod].syms = s = (nms ? xmalloc(nms * sizeof(*s)) : NULL); for (i = 0, ++k; i < nms; ++i, ++s, ++k) { s->name = (unsigned long) k->name; s->value = k->value; } k = k2; } ext_modules = mod; n_ext_modules = nmod + 1; /* Now collect the symbols for the kernel proper. */ if (k->name[0] == '#') ++k; nksyms = nms = nks - (k - ks); ksyms = s = (nms ? xmalloc(nms * sizeof(*s)) : NULL); for (i = 0; i < nms; ++i, ++s, ++k) { s->name = (unsigned long) k->name; s->value = k->value; } return 1; } /* Return the kernel symbol checksum version, or zero if not used. */ static int old_is_kernel_checksummed(void) { /* Using_Versions is the first symbol. */ if (nksyms > 0 && strcmp((char *) ksyms[0].name, "Using_Versions") == 0) return ksyms[0].value; else return 0; } static int old_create_mod_use_count(struct obj_file *f) { struct obj_section *sec; sec = obj_create_alloced_section_first(f, ".moduse", sizeof(long), sizeof(long)); obj_add_symbol(f, "mod_use_count_", -1, ELFW(ST_INFO) (STB_LOCAL, STT_OBJECT), sec->idx, 0, sizeof(long)); return 1; } static int old_init_module(const char *m_name, struct obj_file *f, unsigned long m_size) { char *image; struct old_mod_routines routines; struct old_symbol_table *symtab; int ret; /* Create the symbol table */ { int nsyms = 0, strsize = 0, total; /* Size things first... */ if (flag_export) { int i; for (i = 0; i < HASH_BUCKETS; ++i) { struct obj_symbol *sym; for (sym = f->symtab[i]; sym; sym = sym->next) if (ELFW(ST_BIND) (sym->info) != STB_LOCAL && sym->secidx <= SHN_HIRESERVE) { sym->ksymidx = nsyms++; strsize += strlen(sym->name) + 1; } } } total = (sizeof(struct old_symbol_table) + nsyms * sizeof(struct old_module_symbol) + n_ext_modules_used * sizeof(struct old_module_ref) + strsize); symtab = xmalloc(total); symtab->size = total; symtab->n_symbols = nsyms; symtab->n_refs = n_ext_modules_used; if (flag_export && nsyms) { struct old_module_symbol *ksym; char *str; int i; ksym = symtab->symbol; str = ((char *) ksym + nsyms * sizeof(struct old_module_symbol) + n_ext_modules_used * sizeof(struct old_module_ref)); for (i = 0; i < HASH_BUCKETS; ++i) { struct obj_symbol *sym; for (sym = f->symtab[i]; sym; sym = sym->next) if (sym->ksymidx >= 0) { ksym->addr = obj_symbol_final_value(f, sym); ksym->name = (unsigned long) str - (unsigned long) symtab; str = stpcpy(str, sym->name) + 1; ksym++; } } } if (n_ext_modules_used) { struct old_module_ref *ref; int i; ref = (struct old_module_ref *) ((char *) symtab->symbol + nsyms * sizeof(struct old_module_symbol)); for (i = 0; i < n_ext_modules; ++i) if (ext_modules[i].used) ref++->module = ext_modules[i].addr; } } /* Fill in routines. */ routines.init = obj_symbol_final_value(f, obj_find_symbol(f, "init_module")); routines.cleanup = obj_symbol_final_value(f, obj_find_symbol(f, "cleanup_module")); /* Whew! All of the initialization is complete. Collect the final module image and give it to the kernel. */ image = xmalloc(m_size); obj_create_image(f, image); /* image holds the complete relocated module, accounting correctly for mod_use_count. However the old module kernel support assume that it is receiving something which does not contain mod_use_count. */ ret = old_sys_init_module(m_name, image + sizeof(long), m_size | (flag_autoclean ? OLD_MOD_AUTOCLEAN : 0), &routines, symtab); if (ret) errorMsg("init_module: %s: %s", m_name, strerror(errno)); free(image); free(symtab); return ret == 0; } #else #define old_create_mod_use_count(x) TRUE #define old_init_module(x, y, z) TRUE #endif /* BB_FEATURE_INSMOD_OLD_KERNEL */ /*======================================================================*/ /* Functions relating to module loading after 2.1.18. */ static int new_process_module_arguments(struct obj_file *f, int argc, char **argv) { while (argc > 0) { char *p, *q, *key; struct obj_symbol *sym; char *contents, *loc; int min, max, n; p = *argv; if ((q = strchr(p, '=')) == NULL) { argc--; continue; } key = alloca(q - p + 6); memcpy(key, "parm_", 5); memcpy(key + 5, p, q - p); key[q - p + 5] = 0; p = get_modinfo_value(f, key); key += 5; if (p == NULL) { fprintf(stderr, "invalid parameter %s\n", key); return 0; } sym = obj_find_symbol(f, key); /* Also check that the parameter was not resolved from the kernel. */ if (sym == NULL || sym->secidx > SHN_HIRESERVE) { fprintf(stderr, "symbol for parameter %s not found\n", key); return 0; } if (isdigit(*p)) { min = strtoul(p, &p, 10); if (*p == '-') max = strtoul(p + 1, &p, 10); else max = min; } else min = max = 1; contents = f->sections[sym->secidx]->contents; loc = contents + sym->value; n = (*++q != '\0'); while (1) { if ((*p == 's') || (*p == 'c')) { char *str; /* Do C quoting if we begin with a ", else slurp the lot. */ if (*q == '"') { char *r; str = alloca(strlen(q)); for (r = str, q++; *q != '"'; ++q, ++r) { if (*q == '\0') { fprintf(stderr, "improperly terminated string argument for %s\n", key); return 0; } else if (*q == '\\') switch (*++q) { case 'a': *r = '\a'; break; case 'b': *r = '\b'; break; case 'e': *r = '\033'; break; case 'f': *r = '\f'; break; case 'n': *r = '\n'; break; case 'r': *r = '\r'; break; case 't': *r = '\t'; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { int c = *q - '0'; if (q[1] >= '0' && q[1] <= '7') { c = (c * 8) + *++q - '0'; if (q[1] >= '0' && q[1] <= '7') c = (c * 8) + *++q - '0'; } *r = c; } break; default: *r = *q; break; } else *r = *q; } *r = '\0'; ++q; } else { char *r; /* In this case, the string is not quoted. We will break it using the coma (like for ints). If the user wants to include comas in a string, he just has to quote it */ /* Search the next coma */ r = strchr(q, ','); /* Found ? */ if (r != (char *) NULL) { /* Recopy the current field */ str = alloca(r - q + 1); memcpy(str, q, r - q); /* I don't know if it is usefull, as the previous case doesn't null terminate the string ??? */ str[r - q] = '\0'; /* Keep next fields */ q = r; } else { /* last string */ str = q; q = ""; } } if (*p == 's') { /* Normal string */ obj_string_patch(f, sym->secidx, loc - contents, str); loc += tgt_sizeof_char_p; } else { /* Array of chars (in fact, matrix !) */ long charssize; /* size of each member */ /* Get the size of each member */ /* Probably we should do that outside the loop ? */ if (!isdigit(*(p + 1))) { fprintf(stderr, "parameter type 'c' for %s must be followed by" " the maximum size\n", key); return 0; } charssize = strtoul(p + 1, (char **) NULL, 10); /* Check length */ if (strlen(str) >= charssize) { fprintf(stderr, "string too long for %s (max %ld)\n", key, charssize - 1); return 0; } /* Copy to location */ strcpy((char *) loc, str); loc += charssize; } } else { long v = strtoul(q, &q, 0); switch (*p) { case 'b': *loc++ = v; break; case 'h': *(short *) loc = v; loc += tgt_sizeof_short; break; case 'i': *(int *) loc = v; loc += tgt_sizeof_int; break; case 'l': *(long *) loc = v; loc += tgt_sizeof_long; break; default: fprintf(stderr, "unknown parameter type '%c' for %s\n", *p, key); return 0; } } retry_end_of_value: switch (*q) { case '\0': goto end_of_arg; case ' ': case '\t': case '\n': case '\r': ++q; goto retry_end_of_value; case ',': if (++n > max) { fprintf(stderr, "too many values for %s (max %d)\n", key, max); return 0; } ++q; break; default: fprintf(stderr, "invalid argument syntax for %s\n", key); return 0; } } end_of_arg: if (n < min) { fprintf(stderr, "too few values for %s (min %d)\n", key, min); return 0; } argc--, argv++; } return 1; } #ifdef BB_FEATURE_INSMOD_VERSION_CHECKING static int new_is_module_checksummed(struct obj_file *f) { const char *p = get_modinfo_value(f, "using_checksums"); if (p) return atoi(p); else return 0; } /* Get the module's kernel version in the canonical integer form. */ static int new_get_module_version(struct obj_file *f, char str[STRVERSIONLEN]) { char *p, *q; int a, b, c; p = get_modinfo_value(f, "kernel_version"); if (p == NULL) return -1; strncpy(str, p, STRVERSIONLEN); a = strtoul(p, &p, 10); if (*p != '.') return -1; b = strtoul(p + 1, &p, 10); if (*p != '.') return -1; c = strtoul(p + 1, &q, 10); if (p + 1 == q) return -1; return a << 16 | b << 8 | c; } #endif /* BB_FEATURE_INSMOD_VERSION_CHECKING */ #ifdef BB_FEATURE_INSMOD_NEW_KERNEL /* Fetch the loaded modules, and all currently exported symbols. */ static int new_get_kernel_symbols(void) { char *module_names, *mn; struct external_module *modules, *m; struct new_module_symbol *syms, *s; size_t ret, bufsize, nmod, nsyms, i, j; /* Collect the loaded modules. */ module_names = xmalloc(bufsize = 256); retry_modules_load: if (query_module(NULL, QM_MODULES, module_names, bufsize, &ret)) { if (errno == ENOSPC) { module_names = xrealloc(module_names, bufsize = ret); goto retry_modules_load; } errorMsg("QM_MODULES: %s", strerror(errno)); return 0; } n_ext_modules = nmod = ret; ext_modules = modules = xmalloc(nmod * sizeof(*modules)); memset(modules, 0, nmod * sizeof(*modules)); /* Collect the modules' symbols. */ for (i = 0, mn = module_names, m = modules; i < nmod; ++i, ++m, mn += strlen(mn) + 1) { struct new_module_info info; if (query_module(mn, QM_INFO, &info, sizeof(info), &ret)) { if (errno == ENOENT) { /* The module was removed out from underneath us. */ continue; } errorMsg("query_module: QM_INFO: %s: %s", mn, strerror(errno)); return 0; } syms = xmalloc(bufsize = 1024); retry_mod_sym_load: if (query_module(mn, QM_SYMBOLS, syms, bufsize, &ret)) { switch (errno) { case ENOSPC: syms = xrealloc(syms, bufsize = ret); goto retry_mod_sym_load; case ENOENT: /* The module was removed out from underneath us. */ continue; default: errorMsg("query_module: QM_SYMBOLS: %s: %s", mn, strerror(errno)); return 0; } } nsyms = ret; m->name = mn; m->addr = info.addr; m->nsyms = nsyms; m->syms = syms; for (j = 0, s = syms; j < nsyms; ++j, ++s) { s->name += (unsigned long) syms; } } /* Collect the kernel's symbols. */ syms = xmalloc(bufsize = 16 * 1024); retry_kern_sym_load: if (query_module(NULL, QM_SYMBOLS, syms, bufsize, &ret)) { if (errno == ENOSPC) { syms = xrealloc(syms, bufsize = ret); goto retry_kern_sym_load; } errorMsg("kernel: QM_SYMBOLS: %s", strerror(errno)); return 0; } nksyms = nsyms = ret; ksyms = syms; for (j = 0, s = syms; j < nsyms; ++j, ++s) { s->name += (unsigned long) syms; } return 1; } /* Return the kernel symbol checksum version, or zero if not used. */ static int new_is_kernel_checksummed(void) { struct new_module_symbol *s; size_t i; /* Using_Versions is not the first symbol, but it should be in there. */ for (i = 0, s = ksyms; i < nksyms; ++i, ++s) if (strcmp((char *) s->name, "Using_Versions") == 0) return s->value; return 0; } static int new_create_this_module(struct obj_file *f, const char *m_name) { struct obj_section *sec; sec = obj_create_alloced_section_first(f, ".this", tgt_sizeof_long, sizeof(struct new_module)); memset(sec->contents, 0, sizeof(struct new_module)); obj_add_symbol(f, "__this_module", -1, ELFW(ST_INFO) (STB_LOCAL, STT_OBJECT), sec->idx, 0, sizeof(struct new_module)); obj_string_patch(f, sec->idx, offsetof(struct new_module, name), m_name); return 1; } static int new_create_module_ksymtab(struct obj_file *f) { struct obj_section *sec; int i; /* We must always add the module references. */ if (n_ext_modules_used) { struct new_module_ref *dep; struct obj_symbol *tm; sec = obj_create_alloced_section(f, ".kmodtab", tgt_sizeof_void_p, (sizeof(struct new_module_ref) * n_ext_modules_used)); if (!sec) return 0; tm = obj_find_symbol(f, "__this_module"); dep = (struct new_module_ref *) sec->contents; for (i = 0; i < n_ext_modules; ++i) if (ext_modules[i].used) { dep->dep = ext_modules[i].addr; obj_symbol_patch(f, sec->idx, (char *) &dep->ref - sec->contents, tm); dep->next_ref = 0; ++dep; } } if (flag_export && !obj_find_section(f, "__ksymtab")) { size_t nsyms; int *loaded; sec = obj_create_alloced_section(f, "__ksymtab", tgt_sizeof_void_p, 0); /* We don't want to export symbols residing in sections that aren't loaded. There are a number of these created so that we make sure certain module options don't appear twice. */ loaded = alloca(sizeof(int) * (i = f->header.e_shnum)); while (--i >= 0) loaded[i] = (f->sections[i]->header.sh_flags & SHF_ALLOC) != 0; for (nsyms = i = 0; i < HASH_BUCKETS; ++i) { struct obj_symbol *sym; for (sym = f->symtab[i]; sym; sym = sym->next) if (ELFW(ST_BIND) (sym->info) != STB_LOCAL && sym->secidx <= SHN_HIRESERVE && (sym->secidx >= SHN_LORESERVE || loaded[sym->secidx])) { ElfW(Addr) ofs = nsyms * 2 * tgt_sizeof_void_p; obj_symbol_patch(f, sec->idx, ofs, sym); obj_string_patch(f, sec->idx, ofs + tgt_sizeof_void_p, sym->name); nsyms++; } } obj_extend_section(sec, nsyms * 2 * tgt_sizeof_char_p); } return 1; } static int new_init_module(const char *m_name, struct obj_file *f, unsigned long m_size) { struct new_module *module; struct obj_section *sec; void *image; int ret; tgt_long m_addr; sec = obj_find_section(f, ".this"); module = (struct new_module *) sec->contents; m_addr = sec->header.sh_addr; module->size_of_struct = sizeof(*module); module->size = m_size; module->flags = flag_autoclean ? NEW_MOD_AUTOCLEAN : 0; sec = obj_find_section(f, "__ksymtab"); if (sec && sec->header.sh_size) { module->syms = sec->header.sh_addr; module->nsyms = sec->header.sh_size / (2 * tgt_sizeof_char_p); } if (n_ext_modules_used) { sec = obj_find_section(f, ".kmodtab"); module->deps = sec->header.sh_addr; module->ndeps = n_ext_modules_used; } module->init = obj_symbol_final_value(f, obj_find_symbol(f, "init_module")); module->cleanup = obj_symbol_final_value(f, obj_find_symbol(f, "cleanup_module")); sec = obj_find_section(f, "__ex_table"); if (sec) { module->ex_table_start = sec->header.sh_addr; module->ex_table_end = sec->header.sh_addr + sec->header.sh_size; } sec = obj_find_section(f, ".text.init"); if (sec) { module->runsize = sec->header.sh_addr - m_addr; } sec = obj_find_section(f, ".data.init"); if (sec) { if (!module->runsize || module->runsize > sec->header.sh_addr - m_addr) module->runsize = sec->header.sh_addr - m_addr; } if (!arch_init_module(f, module)) return 0; /* Whew! All of the initialization is complete. Collect the final module image and give it to the kernel. */ image = xmalloc(m_size); obj_create_image(f, image); ret = new_sys_init_module(m_name, (struct new_module *) image); if (ret) errorMsg("init_module: %s: %s", m_name, strerror(errno)); free(image); return ret == 0; } #else #define new_init_module(x, y, z) TRUE #define new_create_this_module(x, y) 0 #define new_create_module_ksymtab(x) #endif /* BB_FEATURE_INSMOD_OLD_KERNEL */ /*======================================================================*/ int obj_string_patch(struct obj_file *f, int secidx, ElfW(Addr) offset, const char *string) { struct obj_string_patch *p; struct obj_section *strsec; size_t len = strlen(string) + 1; char *loc; p = xmalloc(sizeof(*p)); p->next = f->string_patches; p->reloc_secidx = secidx; p->reloc_offset = offset; f->string_patches = p; strsec = obj_find_section(f, ".kstrtab"); if (strsec == NULL) { strsec = obj_create_alloced_section(f, ".kstrtab", 1, len); p->string_offset = 0; loc = strsec->contents; } else { p->string_offset = strsec->header.sh_size; loc = obj_extend_section(strsec, len); } memcpy(loc, string, len); return 1; } int obj_symbol_patch(struct obj_file *f, int secidx, ElfW(Addr) offset, struct obj_symbol *sym) { struct obj_symbol_patch *p; p = xmalloc(sizeof(*p)); p->next = f->symbol_patches; p->reloc_secidx = secidx; p->reloc_offset = offset; p->sym = sym; f->symbol_patches = p; return 1; } int obj_check_undefineds(struct obj_file *f) { unsigned long i; int ret = 1; for (i = 0; i < HASH_BUCKETS; ++i) { struct obj_symbol *sym; for (sym = f->symtab[i]; sym; sym = sym->next) if (sym->secidx == SHN_UNDEF) { if (ELFW(ST_BIND) (sym->info) == STB_WEAK) { sym->secidx = SHN_ABS; sym->value = 0; } else { fprintf(stderr, "unresolved symbol %s\n", sym->name); ret = 0; } } } return ret; } void obj_allocate_commons(struct obj_file *f) { struct common_entry { struct common_entry *next; struct obj_symbol *sym; } *common_head = NULL; unsigned long i; for (i = 0; i < HASH_BUCKETS; ++i) { struct obj_symbol *sym; for (sym = f->symtab[i]; sym; sym = sym->next) if (sym->secidx == SHN_COMMON) { /* Collect all COMMON symbols and sort them by size so as to minimize space wasted by alignment requirements. */ { struct common_entry **p, *n; for (p = &common_head; *p; p = &(*p)->next) if (sym->size <= (*p)->sym->size) break; n = alloca(sizeof(*n)); n->next = *p; n->sym = sym; *p = n; } } } for (i = 1; i < f->local_symtab_size; ++i) { struct obj_symbol *sym = f->local_symtab[i]; if (sym && sym->secidx == SHN_COMMON) { struct common_entry **p, *n; for (p = &common_head; *p; p = &(*p)->next) if (sym == (*p)->sym) break; else if (sym->size < (*p)->sym->size) { n = alloca(sizeof(*n)); n->next = *p; n->sym = sym; *p = n; break; } } } if (common_head) { /* Find the bss section. */ for (i = 0; i < f->header.e_shnum; ++i) if (f->sections[i]->header.sh_type == SHT_NOBITS) break; /* If for some reason there hadn't been one, create one. */ if (i == f->header.e_shnum) { struct obj_section *sec; f->sections = xrealloc(f->sections, (i + 1) * sizeof(sec)); f->sections[i] = sec = arch_new_section(); f->header.e_shnum = i + 1; memset(sec, 0, sizeof(*sec)); sec->header.sh_type = SHT_PROGBITS; sec->header.sh_flags = SHF_WRITE | SHF_ALLOC; sec->name = ".bss"; sec->idx = i; } /* Allocate the COMMONS. */ { ElfW(Addr) bss_size = f->sections[i]->header.sh_size; ElfW(Addr) max_align = f->sections[i]->header.sh_addralign; struct common_entry *c; for (c = common_head; c; c = c->next) { ElfW(Addr) align = c->sym->value; if (align > max_align) max_align = align; if (bss_size & (align - 1)) bss_size = (bss_size | (align - 1)) + 1; c->sym->secidx = i; c->sym->value = bss_size; bss_size += c->sym->size; } f->sections[i]->header.sh_size = bss_size; f->sections[i]->header.sh_addralign = max_align; } } /* For the sake of patch relocation and parameter initialization, allocate zeroed data for NOBITS sections now. Note that after this we cannot assume NOBITS are really empty. */ for (i = 0; i < f->header.e_shnum; ++i) { struct obj_section *s = f->sections[i]; if (s->header.sh_type == SHT_NOBITS) { s->contents = memset(xmalloc(s->header.sh_size), 0, s->header.sh_size); s->header.sh_type = SHT_PROGBITS; } } } unsigned long obj_load_size(struct obj_file *f) { unsigned long dot = 0; struct obj_section *sec; /* Finalize the positions of the sections relative to one another. */ for (sec = f->load_order; sec; sec = sec->load_next) { ElfW(Addr) align; align = sec->header.sh_addralign; if (align && (dot & (align - 1))) dot = (dot | (align - 1)) + 1; sec->header.sh_addr = dot; dot += sec->header.sh_size; } return dot; } int obj_relocate(struct obj_file *f, ElfW(Addr) base) { int i, n = f->header.e_shnum; int ret = 1; /* Finalize the addresses of the sections. */ f->baseaddr = base; for (i = 0; i < n; ++i) f->sections[i]->header.sh_addr += base; /* And iterate over all of the relocations. */ for (i = 0; i < n; ++i) { struct obj_section *relsec, *symsec, *targsec, *strsec; ElfW(RelM) * rel, *relend; ElfW(Sym) * symtab; const char *strtab; relsec = f->sections[i]; if (relsec->header.sh_type != SHT_RELM) continue; symsec = f->sections[relsec->header.sh_link]; targsec = f->sections[relsec->header.sh_info]; strsec = f->sections[symsec->header.sh_link]; rel = (ElfW(RelM) *) relsec->contents; relend = rel + (relsec->header.sh_size / sizeof(ElfW(RelM))); symtab = (ElfW(Sym) *) symsec->contents; strtab = (const char *) strsec->contents; for (; rel < relend; ++rel) { ElfW(Addr) value = 0; struct obj_symbol *intsym = NULL; unsigned long symndx; ElfW(Sym) * extsym = 0; const char *errmsg; /* Attempt to find a value to use for this relocation. */ symndx = ELFW(R_SYM) (rel->r_info); if (symndx) { /* Note we've already checked for undefined symbols. */ extsym = &symtab[symndx]; if (ELFW(ST_BIND) (extsym->st_info) == STB_LOCAL) { /* Local symbols we look up in the local table to be sure we get the one that is really intended. */ intsym = f->local_symtab[symndx]; } else { /* Others we look up in the hash table. */ const char *name; if (extsym->st_name) name = strtab + extsym->st_name; else name = f->sections[extsym->st_shndx]->name; intsym = obj_find_symbol(f, name); } value = obj_symbol_final_value(f, intsym); intsym->referenced = 1; } #if SHT_RELM == SHT_RELA #if defined(__alpha__) && defined(AXP_BROKEN_GAS) /* Work around a nasty GAS bug, that is fixed as of 2.7.0.9. */ if (!extsym || !extsym->st_name || ELFW(ST_BIND) (extsym->st_info) != STB_LOCAL) #endif value += rel->r_addend; #endif /* Do it! */ switch (arch_apply_relocation (f, targsec, symsec, intsym, rel, value)) { case obj_reloc_ok: break; case obj_reloc_overflow: errmsg = "Relocation overflow"; goto bad_reloc; case obj_reloc_dangerous: errmsg = "Dangerous relocation"; goto bad_reloc; case obj_reloc_unhandled: errmsg = "Unhandled relocation"; bad_reloc: if (extsym) { fprintf(stderr, "%s of type %ld for %s\n", errmsg, (long) ELFW(R_TYPE) (rel->r_info), strtab + extsym->st_name); } else { fprintf(stderr, "%s of type %ld\n", errmsg, (long) ELFW(R_TYPE) (rel->r_info)); } ret = 0; break; } } } /* Finally, take care of the patches. */ if (f->string_patches) { struct obj_string_patch *p; struct obj_section *strsec; ElfW(Addr) strsec_base; strsec = obj_find_section(f, ".kstrtab"); strsec_base = strsec->header.sh_addr; for (p = f->string_patches; p; p = p->next) { struct obj_section *targsec = f->sections[p->reloc_secidx]; *(ElfW(Addr) *) (targsec->contents + p->reloc_offset) = strsec_base + p->string_offset; } } if (f->symbol_patches) { struct obj_symbol_patch *p; for (p = f->symbol_patches; p; p = p->next) { struct obj_section *targsec = f->sections[p->reloc_secidx]; *(ElfW(Addr) *) (targsec->contents + p->reloc_offset) = obj_symbol_final_value(f, p->sym); } } return ret; } int obj_create_image(struct obj_file *f, char *image) { struct obj_section *sec; ElfW(Addr) base = f->baseaddr; for (sec = f->load_order; sec; sec = sec->load_next) { char *secimg; if (sec->header.sh_size == 0) continue; secimg = image + (sec->header.sh_addr - base); /* Note that we allocated data for NOBITS sections earlier. */ memcpy(secimg, sec->contents, sec->header.sh_size); } return 1; } /*======================================================================*/ struct obj_file *obj_load(FILE * fp) { struct obj_file *f; ElfW(Shdr) * section_headers; int shnum, i; char *shstrtab; /* Read the file header. */ f = arch_new_file(); memset(f, 0, sizeof(*f)); f->symbol_cmp = strcmp; f->symbol_hash = obj_elf_hash; f->load_order_search_start = &f->load_order; fseek(fp, 0, SEEK_SET); if (fread(&f->header, sizeof(f->header), 1, fp) != 1) { errorMsg("error reading ELF header: %s", strerror(errno)); return NULL; } if (f->header.e_ident[EI_MAG0] != ELFMAG0 || f->header.e_ident[EI_MAG1] != ELFMAG1 || f->header.e_ident[EI_MAG2] != ELFMAG2 || f->header.e_ident[EI_MAG3] != ELFMAG3) { fprintf(stderr, "not an ELF file\n"); return NULL; } if (f->header.e_ident[EI_CLASS] != ELFCLASSM || f->header.e_ident[EI_DATA] != ELFDATAM || f->header.e_ident[EI_VERSION] != EV_CURRENT || !MATCH_MACHINE(f->header.e_machine)) { fprintf(stderr, "ELF file not for this architecture\n"); return NULL; } if (f->header.e_type != ET_REL) { fprintf(stderr, "ELF file not a relocatable object\n"); return NULL; } /* Read the section headers. */ if (f->header.e_shentsize != sizeof(ElfW(Shdr))) { fprintf(stderr, "section header size mismatch: %lu != %lu\n", (unsigned long) f->header.e_shentsize, (unsigned long) sizeof(ElfW(Shdr))); return NULL; } shnum = f->header.e_shnum; f->sections = xmalloc(sizeof(struct obj_section *) * shnum); memset(f->sections, 0, sizeof(struct obj_section *) * shnum); section_headers = alloca(sizeof(ElfW(Shdr)) * shnum); fseek(fp, f->header.e_shoff, SEEK_SET); if (fread(section_headers, sizeof(ElfW(Shdr)), shnum, fp) != shnum) { errorMsg("error reading ELF section headers: %s", strerror(errno)); return NULL; } /* Read the section data. */ for (i = 0; i < shnum; ++i) { struct obj_section *sec; f->sections[i] = sec = arch_new_section(); memset(sec, 0, sizeof(*sec)); sec->header = section_headers[i]; sec->idx = i; switch (sec->header.sh_type) { case SHT_NULL: case SHT_NOTE: case SHT_NOBITS: /* ignore */ break; case SHT_PROGBITS: case SHT_SYMTAB: case SHT_STRTAB: case SHT_RELM: if (sec->header.sh_size > 0) { sec->contents = xmalloc(sec->header.sh_size); fseek(fp, sec->header.sh_offset, SEEK_SET); if (fread(sec->contents, sec->header.sh_size, 1, fp) != 1) { errorMsg("error reading ELF section data: %s", strerror(errno)); return NULL; } } else { sec->contents = NULL; } break; #if SHT_RELM == SHT_REL case SHT_RELA: fprintf(stderr, "RELA relocations not supported on this architecture\n"); return NULL; #else case SHT_REL: fprintf(stderr, "REL relocations not supported on this architecture\n"); return NULL; #endif default: if (sec->header.sh_type >= SHT_LOPROC) { /* Assume processor specific section types are debug info and can safely be ignored. If this is ever not the case (Hello MIPS?), don't put ifdefs here but create an arch_load_proc_section(). */ break; } fprintf(stderr, "can't handle sections of type %ld\n", (long) sec->header.sh_type); return NULL; } } /* Do what sort of interpretation as needed by each section. */ shstrtab = f->sections[f->header.e_shstrndx]->contents; for (i = 0; i < shnum; ++i) { struct obj_section *sec = f->sections[i]; sec->name = shstrtab + sec->header.sh_name; } for (i = 0; i < shnum; ++i) { struct obj_section *sec = f->sections[i]; if (sec->header.sh_flags & SHF_ALLOC) obj_insert_section_load_order(f, sec); switch (sec->header.sh_type) { case SHT_SYMTAB: { unsigned long nsym, j; char *strtab; ElfW(Sym) * sym; if (sec->header.sh_entsize != sizeof(ElfW(Sym))) { fprintf(stderr, "symbol size mismatch: %lu != %lu\n", (unsigned long) sec->header.sh_entsize, (unsigned long) sizeof(ElfW(Sym))); return NULL; } nsym = sec->header.sh_size / sizeof(ElfW(Sym)); strtab = f->sections[sec->header.sh_link]->contents; sym = (ElfW(Sym) *) sec->contents; /* Allocate space for a table of local symbols. */ j = f->local_symtab_size = sec->header.sh_info; f->local_symtab = xmalloc(j *= sizeof(struct obj_symbol *)); memset(f->local_symtab, 0, j); /* Insert all symbols into the hash table. */ for (j = 1, ++sym; j < nsym; ++j, ++sym) { const char *name; if (sym->st_name) name = strtab + sym->st_name; else name = f->sections[sym->st_shndx]->name; obj_add_symbol(f, name, j, sym->st_info, sym->st_shndx, sym->st_value, sym->st_size); } } break; case SHT_RELM: if (sec->header.sh_entsize != sizeof(ElfW(RelM))) { fprintf(stderr, "relocation entry size mismatch: %lu != %lu\n", (unsigned long) sec->header.sh_entsize, (unsigned long) sizeof(ElfW(RelM))); return NULL; } break; } } return f; } static void hide_special_symbols(struct obj_file *f) { static const char *const specials[] = { "cleanup_module", "init_module", "kernel_version", NULL }; struct obj_symbol *sym; const char *const *p; for (p = specials; *p; ++p) if ((sym = obj_find_symbol(f, *p)) != NULL) sym->info = ELFW(ST_INFO) (STB_LOCAL, ELFW(ST_TYPE) (sym->info)); } extern int insmod_main( int argc, char **argv) { int k_crcs; int k_new_syscalls; int len; char *tmp; unsigned long m_size; ElfW(Addr) m_addr; FILE *fp; struct obj_file *f; char m_name[BUFSIZ + 1] = "\0"; int exit_status = FALSE; int m_has_modinfo; #ifdef BB_FEATURE_INSMOD_VERSION_CHECKING int k_version; char k_strversion[STRVERSIONLEN]; char m_strversion[STRVERSIONLEN]; int m_version; int m_crcs; #endif if (argc <= 1) { usage(insmod_usage); } /* Parse any options */ while (--argc > 0 && **(++argv) == '-') { while (*(++(*argv))) { switch (**argv) { case 'f': /* force loading */ flag_force_load = 1; break; case 'k': /* module loaded by kerneld, auto-cleanable */ flag_autoclean = 1; break; case 'v': /* verbose output */ flag_verbose = 1; break; case 'x': /* do not export externs */ flag_export = 0; break; default: usage(insmod_usage); } } } if (argc <= 0) { usage(insmod_usage); } /* Grab the module name */ if ((tmp = strrchr(*argv, '/')) != NULL) { tmp++; } else { tmp = *argv; } len = strlen(tmp); if (len > 2 && tmp[len - 2] == '.' && tmp[len - 1] == 'o') len -= 2; memcpy(m_name, tmp, len); strcpy(m_fullName, m_name); strcat(m_fullName, ".o"); /* Get a filedesc for the module */ if ((fp = fopen(*argv, "r")) == NULL) { /* Hmpf. Could not open it. Search through _PATH_MODULES to find a module named m_name */ if (recursiveAction(_PATH_MODULES, TRUE, FALSE, FALSE, findNamedModule, 0, m_fullName) == TRUE) { if (m_filename[0] == '\0' || ((fp = fopen(m_filename, "r")) == NULL)) { errorMsg("No module named '%s' found in '%s'\n", m_fullName, _PATH_MODULES); exit(FALSE); } } } else memcpy(m_filename, *argv, strlen(*argv)); if ((f = obj_load(fp)) == NULL) { perror("Could not load the module\n"); exit(FALSE); } if (get_modinfo_value(f, "kernel_version") == NULL) m_has_modinfo = 0; else m_has_modinfo = 1; #ifdef BB_FEATURE_INSMOD_VERSION_CHECKING /* Version correspondence? */ k_version = get_kernel_version(k_strversion); if (m_has_modinfo) { m_version = new_get_module_version(f, m_strversion); } else { m_version = old_get_module_version(f, m_strversion); if (m_version == -1) { fprintf(stderr, "couldn't find the kernel version the module was compiled for\n"); goto out; } } if (strncmp(k_strversion, m_strversion, STRVERSIONLEN) != 0) { if (flag_force_load) { fprintf(stderr, "Warning: kernel-module version mismatch\n" "\t%s was compiled for kernel version %s\n" "\twhile this kernel is version %s\n", m_filename, m_strversion, k_strversion); } else { fprintf(stderr, "kernel-module version mismatch\n" "\t%s was compiled for kernel version %s\n" "\twhile this kernel is version %s.\n", m_filename, m_strversion, k_strversion); goto out; } } k_crcs = 0; #endif /* BB_FEATURE_INSMOD_VERSION_CHECKING */ k_new_syscalls = !query_module(NULL, 0, NULL, 0, NULL); if (k_new_syscalls) { #ifdef BB_FEATURE_INSMOD_NEW_KERNEL if (!new_get_kernel_symbols()) goto out; k_crcs = new_is_kernel_checksummed(); #else fprintf(stderr, "Not configured to support new kernels\n"); goto out; #endif } else { #ifdef BB_FEATURE_INSMOD_OLD_KERNEL if (!old_get_kernel_symbols()) goto out; k_crcs = old_is_kernel_checksummed(); #else fprintf(stderr, "Not configured to support old kernels\n"); goto out; #endif } #ifdef BB_FEATURE_INSMOD_VERSION_CHECKING if (m_has_modinfo) m_crcs = new_is_module_checksummed(f); else m_crcs = old_is_module_checksummed(f); if (m_crcs != k_crcs) obj_set_symbol_compare(f, ncv_strcmp, ncv_symbol_hash); #endif /* BB_FEATURE_INSMOD_VERSION_CHECKING */ /* Let the module know about the kernel symbols. */ add_kernel_symbols(f); /* Allocate common symbols, symbol tables, and string tables. */ if (k_new_syscalls ? !new_create_this_module(f, m_name) : !old_create_mod_use_count(f)) { goto out; } if (!obj_check_undefineds(f)) { goto out; } obj_allocate_commons(f); if (optind < argc) { if (m_has_modinfo ? !new_process_module_arguments(f, argc - optind, argv + optind) : !old_process_module_arguments(f, argc - optind, argv + optind)) { goto out; } } arch_create_got(f); hide_special_symbols(f); if (k_new_syscalls) new_create_module_ksymtab(f); /* Find current size of the module */ m_size = obj_load_size(f); errno = 0; m_addr = create_module(m_name, m_size); switch (errno) { case 0: break; case EEXIST: fprintf(stderr, "A module named %s already exists\n", m_name); goto out; case ENOMEM: fprintf(stderr, "Can't allocate kernel memory for module; needed %lu bytes\n", m_size); goto out; default: errorMsg("create_module: %s: %s", m_name, strerror(errno)); goto out; } if (!obj_relocate(f, m_addr)) { delete_module(m_name); goto out; } if (k_new_syscalls ? !new_init_module(m_name, f, m_size) : !old_init_module(m_name, f, m_size)) { delete_module(m_name); goto out; } exit_status = TRUE; out: fclose(fp); return(exit_status); }