/* * FreeSec: libcrypt for NetBSD * * Copyright (c) 1994 David Burren * All rights reserved. * * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet * this file should now *only* export crypt(), in order to make * binaries of libcrypt exportable from the USA * * Adapted for FreeBSD-4.0 by Mark R V Murray * this file should now *only* export crypt_des(), in order to make * a module that can be optionally included in libcrypt. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of other contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ''AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This is an original implementation of the DES and the crypt(3) interfaces * by David Burren <davidb@werj.com.au>. * * An excellent reference on the underlying algorithm (and related * algorithms) is: * * B. Schneier, Applied Cryptography: protocols, algorithms, * and source code in C, John Wiley & Sons, 1994. * * Note that in that book's description of DES the lookups for the initial, * pbox, and final permutations are inverted (this has been brought to the * attention of the author). A list of errata for this book has been * posted to the sci.crypt newsgroup by the author and is available for FTP. * * ARCHITECTURE ASSUMPTIONS: * It is assumed that the 8-byte arrays passed by reference can be * addressed as arrays of uint32_t's (ie. the CPU is not picky about * alignment). */ /* Parts busybox doesn't need or had optimized */ #define USE_PRECOMPUTED_u_sbox 1 #define USE_REPETITIVE_SPEEDUP 0 #define USE_ip_mask 0 #define USE_de_keys 0 /* A pile of data */ static const uint8_t IP[64] = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; static const uint8_t key_perm[56] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; static const uint8_t key_shifts[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; static const uint8_t comp_perm[48] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; /* * No E box is used, as it's replaced by some ANDs, shifts, and ORs. */ #if !USE_PRECOMPUTED_u_sbox static const uint8_t sbox[8][64] = { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }, { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }, { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }, { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }, { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }, { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }, { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }, { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } }; #else /* precomputed, with half-bytes packed into one byte */ static const uint8_t u_sbox[8][32] = { { 0x0e, 0xf4, 0x7d, 0x41, 0xe2, 0x2f, 0xdb, 0x18, 0xa3, 0x6a, 0xc6, 0xbc, 0x95, 0x59, 0x30, 0x87, 0xf4, 0xc1, 0x8e, 0x28, 0x4d, 0x96, 0x12, 0x7b, 0x5f, 0xbc, 0x39, 0xe7, 0xa3, 0x0a, 0x65, 0xd0, }, { 0x3f, 0xd1, 0x48, 0x7e, 0xf6, 0x2b, 0x83, 0xe4, 0xc9, 0x07, 0x12, 0xad, 0x6c, 0x90, 0xb5, 0x5a, 0xd0, 0x8e, 0xa7, 0x1b, 0x3a, 0xf4, 0x4d, 0x21, 0xb5, 0x68, 0x7c, 0xc6, 0x09, 0x53, 0xe2, 0x9f, }, { 0xda, 0x70, 0x09, 0x9e, 0x36, 0x43, 0x6f, 0xa5, 0x21, 0x8d, 0x5c, 0xe7, 0xcb, 0xb4, 0xf2, 0x18, 0x1d, 0xa6, 0xd4, 0x09, 0x68, 0x9f, 0x83, 0x70, 0x4b, 0xf1, 0xe2, 0x3c, 0xb5, 0x5a, 0x2e, 0xc7, }, { 0xd7, 0x8d, 0xbe, 0x53, 0x60, 0xf6, 0x09, 0x3a, 0x41, 0x72, 0x28, 0xc5, 0x1b, 0xac, 0xe4, 0x9f, 0x3a, 0xf6, 0x09, 0x60, 0xac, 0x1b, 0xd7, 0x8d, 0x9f, 0x41, 0x53, 0xbe, 0xc5, 0x72, 0x28, 0xe4, }, { 0xe2, 0xbc, 0x24, 0xc1, 0x47, 0x7a, 0xdb, 0x16, 0x58, 0x05, 0xf3, 0xaf, 0x3d, 0x90, 0x8e, 0x69, 0xb4, 0x82, 0xc1, 0x7b, 0x1a, 0xed, 0x27, 0xd8, 0x6f, 0xf9, 0x0c, 0x95, 0xa6, 0x43, 0x50, 0x3e, }, { 0xac, 0xf1, 0x4a, 0x2f, 0x79, 0xc2, 0x96, 0x58, 0x60, 0x1d, 0xd3, 0xe4, 0x0e, 0xb7, 0x35, 0x8b, 0x49, 0x3e, 0x2f, 0xc5, 0x92, 0x58, 0xfc, 0xa3, 0xb7, 0xe0, 0x14, 0x7a, 0x61, 0x0d, 0x8b, 0xd6, }, { 0xd4, 0x0b, 0xb2, 0x7e, 0x4f, 0x90, 0x18, 0xad, 0xe3, 0x3c, 0x59, 0xc7, 0x25, 0xfa, 0x86, 0x61, 0x61, 0xb4, 0xdb, 0x8d, 0x1c, 0x43, 0xa7, 0x7e, 0x9a, 0x5f, 0x06, 0xf8, 0xe0, 0x25, 0x39, 0xc2, }, { 0x1d, 0xf2, 0xd8, 0x84, 0xa6, 0x3f, 0x7b, 0x41, 0xca, 0x59, 0x63, 0xbe, 0x05, 0xe0, 0x9c, 0x27, 0x27, 0x1b, 0xe4, 0x71, 0x49, 0xac, 0x8e, 0xd2, 0xf0, 0xc6, 0x9a, 0x0d, 0x3f, 0x53, 0x65, 0xb8, }, }; #endif static const uint8_t pbox[32] = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; static const uint32_t bits32[32] = { 0x80000000, 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; static int ascii_to_bin(char ch) { if (ch > 'z') return 0; if (ch >= 'a') return (ch - 'a' + 38); if (ch > 'Z') return 0; if (ch >= 'A') return (ch - 'A' + 12); if (ch > '9') return 0; if (ch >= '.') return (ch - '.'); return 0; } /* Static stuff that stays resident and doesn't change after * being initialized, and therefore doesn't need to be made * reentrant. */ struct const_des_ctx { #if USE_ip_mask uint8_t init_perm[64]; /* referenced 2 times */ #endif uint8_t final_perm[64]; /* 2 times */ uint8_t m_sbox[4][4096]; /* 5 times */ }; #define C (*cctx) #define init_perm (C.init_perm ) #define final_perm (C.final_perm) #define m_sbox (C.m_sbox ) static struct const_des_ctx* const_des_init(void) { unsigned i, j, b; struct const_des_ctx *cctx; #if !USE_PRECOMPUTED_u_sbox uint8_t u_sbox[8][64]; cctx = xmalloc(sizeof(*cctx)); /* Invert the S-boxes, reordering the input bits. */ for (i = 0; i < 8; i++) { for (j = 0; j < 64; j++) { b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); u_sbox[i][j] = sbox[i][b]; } } for (i = 0; i < 8; i++) { fprintf(stderr, "\t{\t"); for (j = 0; j < 64; j+=2) fprintf(stderr, " 0x%02x,", u_sbox[i][j] + u_sbox[i][j+1]*16); fprintf(stderr, "\n\t},\n"); } /* * Convert the inverted S-boxes into 4 arrays of 8 bits. * Each will handle 12 bits of the S-box input. */ for (b = 0; b < 4; b++) for (i = 0; i < 64; i++) for (j = 0; j < 64; j++) m_sbox[b][(i << 6) | j] = (uint8_t)((u_sbox[(b << 1)][i] << 4) | u_sbox[(b << 1) + 1][j]); #else cctx = xmalloc(sizeof(*cctx)); /* * Convert the inverted S-boxes into 4 arrays of 8 bits. * Each will handle 12 bits of the S-box input. */ for (b = 0; b < 4; b++) for (i = 0; i < 64; i++) for (j = 0; j < 64; j++) { uint8_t lo, hi; hi = u_sbox[(b << 1)][i / 2]; if (!(i & 1)) hi <<= 4; lo = u_sbox[(b << 1) + 1][j / 2]; if (j & 1) lo >>= 4; m_sbox[b][(i << 6) | j] = (hi & 0xf0) | (lo & 0x0f); } #endif /* * Set up the initial & final permutations into a useful form. */ for (i = 0; i < 64; i++) { final_perm[i] = IP[i] - 1; #if USE_ip_mask init_perm[final_perm[i]] = (uint8_t)i; #endif } return cctx; } struct des_ctx { const struct const_des_ctx *const_ctx; uint32_t saltbits; /* referenced 5 times */ #if USE_REPETITIVE_SPEEDUP uint32_t old_salt; /* 3 times */ uint32_t old_rawkey0, old_rawkey1; /* 3 times each */ #endif uint8_t un_pbox[32]; /* 2 times */ uint8_t inv_comp_perm[56]; /* 3 times */ uint8_t inv_key_perm[64]; /* 3 times */ uint32_t en_keysl[16], en_keysr[16]; /* 2 times each */ #if USE_de_keys uint32_t de_keysl[16], de_keysr[16]; /* 2 times each */ #endif #if USE_ip_mask uint32_t ip_maskl[8][256], ip_maskr[8][256]; /* 9 times each */ #endif uint32_t fp_maskl[8][256], fp_maskr[8][256]; /* 9 times each */ uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; /* 9 times */ uint32_t comp_maskl[8][128], comp_maskr[8][128]; /* 9 times each */ uint32_t psbox[4][256]; /* 5 times */ }; #define D (*ctx) #define const_ctx (D.const_ctx ) #define saltbits (D.saltbits ) #define old_salt (D.old_salt ) #define old_rawkey0 (D.old_rawkey0 ) #define old_rawkey1 (D.old_rawkey1 ) #define un_pbox (D.un_pbox ) #define inv_comp_perm (D.inv_comp_perm ) #define inv_key_perm (D.inv_key_perm ) #define en_keysl (D.en_keysl ) #define en_keysr (D.en_keysr ) #define de_keysl (D.de_keysl ) #define de_keysr (D.de_keysr ) #define ip_maskl (D.ip_maskl ) #define ip_maskr (D.ip_maskr ) #define fp_maskl (D.fp_maskl ) #define fp_maskr (D.fp_maskr ) #define key_perm_maskl (D.key_perm_maskl ) #define key_perm_maskr (D.key_perm_maskr ) #define comp_maskl (D.comp_maskl ) #define comp_maskr (D.comp_maskr ) #define psbox (D.psbox ) static struct des_ctx* des_init(struct des_ctx *ctx, const struct const_des_ctx *cctx) { int i, j, b, k, inbit, obit; uint32_t p; const uint32_t *bits28, *bits24; if (!ctx) ctx = xmalloc(sizeof(*ctx)); const_ctx = cctx; #if USE_REPETITIVE_SPEEDUP old_rawkey0 = old_rawkey1 = 0; old_salt = 0; #endif saltbits = 0; bits28 = bits32 + 4; bits24 = bits28 + 4; /* Initialise the inverted key permutation. */ for (i = 0; i < 64; i++) { inv_key_perm[i] = 255; } /* * Invert the key permutation and initialise the inverted key * compression permutation. */ for (i = 0; i < 56; i++) { inv_key_perm[key_perm[i] - 1] = (uint8_t)i; inv_comp_perm[i] = 255; } /* Invert the key compression permutation. */ for (i = 0; i < 48; i++) { inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i; } /* * Set up the OR-mask arrays for the initial and final permutations, * and for the key initial and compression permutations. */ for (k = 0; k < 8; k++) { uint32_t il, ir; uint32_t fl, fr; for (i = 0; i < 256; i++) { #if USE_ip_mask il = 0; ir = 0; #endif fl = 0; fr = 0; for (j = 0; j < 8; j++) { inbit = 8 * k + j; if (i & bits8[j]) { #if USE_ip_mask obit = init_perm[inbit]; if (obit < 32) il |= bits32[obit]; else ir |= bits32[obit - 32]; #endif obit = final_perm[inbit]; if (obit < 32) fl |= bits32[obit]; else fr |= bits32[obit - 32]; } } #if USE_ip_mask ip_maskl[k][i] = il; ip_maskr[k][i] = ir; #endif fp_maskl[k][i] = fl; fp_maskr[k][i] = fr; } for (i = 0; i < 128; i++) { il = 0; ir = 0; for (j = 0; j < 7; j++) { inbit = 8 * k + j; if (i & bits8[j + 1]) { obit = inv_key_perm[inbit]; if (obit == 255) continue; if (obit < 28) il |= bits28[obit]; else ir |= bits28[obit - 28]; } } key_perm_maskl[k][i] = il; key_perm_maskr[k][i] = ir; il = 0; ir = 0; for (j = 0; j < 7; j++) { inbit = 7 * k + j; if (i & bits8[j + 1]) { obit = inv_comp_perm[inbit]; if (obit == 255) continue; if (obit < 24) il |= bits24[obit]; else ir |= bits24[obit - 24]; } } comp_maskl[k][i] = il; comp_maskr[k][i] = ir; } } /* * Invert the P-box permutation, and convert into OR-masks for * handling the output of the S-box arrays setup above. */ for (i = 0; i < 32; i++) un_pbox[pbox[i] - 1] = (uint8_t)i; for (b = 0; b < 4; b++) { for (i = 0; i < 256; i++) { p = 0; for (j = 0; j < 8; j++) { if (i & bits8[j]) p |= bits32[un_pbox[8 * b + j]]; } psbox[b][i] = p; } } return ctx; } static void setup_salt(struct des_ctx *ctx, uint32_t salt) { uint32_t obit, saltbit; int i; #if USE_REPETITIVE_SPEEDUP if (salt == old_salt) return; old_salt = salt; #endif saltbits = 0; saltbit = 1; obit = 0x800000; for (i = 0; i < 24; i++) { if (salt & saltbit) saltbits |= obit; saltbit <<= 1; obit >>= 1; } } static void des_setkey(struct des_ctx *ctx, const char *key) { uint32_t k0, k1, rawkey0, rawkey1; int shifts, round; rawkey0 = ntohl(*(const uint32_t *) key); rawkey1 = ntohl(*(const uint32_t *) (key + 4)); #if USE_REPETITIVE_SPEEDUP if ((rawkey0 | rawkey1) && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1 ) { /* * Already setup for this key. * This optimisation fails on a zero key (which is weak and * has bad parity anyway) in order to simplify the starting * conditions. */ return; } old_rawkey0 = rawkey0; old_rawkey1 = rawkey1; #endif /* * Do key permutation and split into two 28-bit subkeys. */ k0 = key_perm_maskl[0][rawkey0 >> 25] | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] | key_perm_maskl[4][rawkey1 >> 25] | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; k1 = key_perm_maskr[0][rawkey0 >> 25] | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] | key_perm_maskr[4][rawkey1 >> 25] | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; /* * Rotate subkeys and do compression permutation. */ shifts = 0; for (round = 0; round < 16; round++) { uint32_t t0, t1; shifts += key_shifts[round]; t0 = (k0 << shifts) | (k0 >> (28 - shifts)); t1 = (k1 << shifts) | (k1 >> (28 - shifts)); #if USE_de_keys de_keysl[15 - round] = #endif en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | comp_maskl[1][(t0 >> 14) & 0x7f] | comp_maskl[2][(t0 >> 7) & 0x7f] | comp_maskl[3][t0 & 0x7f] | comp_maskl[4][(t1 >> 21) & 0x7f] | comp_maskl[5][(t1 >> 14) & 0x7f] | comp_maskl[6][(t1 >> 7) & 0x7f] | comp_maskl[7][t1 & 0x7f]; #if USE_de_keys de_keysr[15 - round] = #endif en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | comp_maskr[1][(t0 >> 14) & 0x7f] | comp_maskr[2][(t0 >> 7) & 0x7f] | comp_maskr[3][t0 & 0x7f] | comp_maskr[4][(t1 >> 21) & 0x7f] | comp_maskr[5][(t1 >> 14) & 0x7f] | comp_maskr[6][(t1 >> 7) & 0x7f] | comp_maskr[7][t1 & 0x7f]; } } static void do_des(struct des_ctx *ctx, /*uint32_t l_in, uint32_t r_in,*/ uint32_t *l_out, uint32_t *r_out, int count) { const struct const_des_ctx *cctx = const_ctx; /* * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ uint32_t l, r, *kl, *kr; uint32_t f = f; /* silence gcc */ uint32_t r48l, r48r; int round; /* Do initial permutation (IP). */ #if USE_ip_mask uint32_t l_in = 0; uint32_t r_in = 0; l = ip_maskl[0][l_in >> 24] | ip_maskl[1][(l_in >> 16) & 0xff] | ip_maskl[2][(l_in >> 8) & 0xff] | ip_maskl[3][l_in & 0xff] | ip_maskl[4][r_in >> 24] | ip_maskl[5][(r_in >> 16) & 0xff] | ip_maskl[6][(r_in >> 8) & 0xff] | ip_maskl[7][r_in & 0xff]; r = ip_maskr[0][l_in >> 24] | ip_maskr[1][(l_in >> 16) & 0xff] | ip_maskr[2][(l_in >> 8) & 0xff] | ip_maskr[3][l_in & 0xff] | ip_maskr[4][r_in >> 24] | ip_maskr[5][(r_in >> 16) & 0xff] | ip_maskr[6][(r_in >> 8) & 0xff] | ip_maskr[7][r_in & 0xff]; #elif 0 /* -65 bytes (using the fact that l_in == r_in == 0) */ l = r = 0; for (round = 0; round < 8; round++) { l |= ip_maskl[round][0]; r |= ip_maskr[round][0]; } bb_error_msg("l:%x r:%x", l, r); /* reports 0, 0 always! */ #else /* using the fact that ip_maskX[] is constant (written to by des_init) */ l = r = 0; #endif do { /* Do each round. */ kl = en_keysl; kr = en_keysr; round = 16; do { /* Expand R to 48 bits (simulate the E-box). */ r48l = ((r & 0x00000001) << 23) | ((r & 0xf8000000) >> 9) | ((r & 0x1f800000) >> 11) | ((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15); r48r = ((r & 0x0001f800) << 7) | ((r & 0x00001f80) << 5) | ((r & 0x000001f8) << 3) | ((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31); /* * Do salting for crypt() and friends, and * XOR with the permuted key. */ f = (r48l ^ r48r) & saltbits; r48l ^= f ^ *kl++; r48r ^= f ^ *kr++; /* * Do sbox lookups (which shrink it back to 32 bits) * and do the pbox permutation at the same time. */ f = psbox[0][m_sbox[0][r48l >> 12]] | psbox[1][m_sbox[1][r48l & 0xfff]] | psbox[2][m_sbox[2][r48r >> 12]] | psbox[3][m_sbox[3][r48r & 0xfff]]; /* Now that we've permuted things, complete f(). */ f ^= l; l = r; r = f; } while (--round); r = l; l = f; } while (--count); /* Do final permutation (inverse of IP). */ *l_out = fp_maskl[0][l >> 24] | fp_maskl[1][(l >> 16) & 0xff] | fp_maskl[2][(l >> 8) & 0xff] | fp_maskl[3][l & 0xff] | fp_maskl[4][r >> 24] | fp_maskl[5][(r >> 16) & 0xff] | fp_maskl[6][(r >> 8) & 0xff] | fp_maskl[7][r & 0xff]; *r_out = fp_maskr[0][l >> 24] | fp_maskr[1][(l >> 16) & 0xff] | fp_maskr[2][(l >> 8) & 0xff] | fp_maskr[3][l & 0xff] | fp_maskr[4][r >> 24] | fp_maskr[5][(r >> 16) & 0xff] | fp_maskr[6][(r >> 8) & 0xff] | fp_maskr[7][r & 0xff]; } #define DES_OUT_BUFSIZE 21 static void to64_msb_first(char *s, unsigned v) { #if 0 *s++ = ascii64[(v >> 18) & 0x3f]; /* bits 23..18 */ *s++ = ascii64[(v >> 12) & 0x3f]; /* bits 17..12 */ *s++ = ascii64[(v >> 6) & 0x3f]; /* bits 11..6 */ *s = ascii64[v & 0x3f]; /* bits 5..0 */ #endif *s++ = i64c(v >> 18); /* bits 23..18 */ *s++ = i64c(v >> 12); /* bits 17..12 */ *s++ = i64c(v >> 6); /* bits 11..6 */ *s = i64c(v); /* bits 5..0 */ } static char * NOINLINE des_crypt(struct des_ctx *ctx, char output[DES_OUT_BUFSIZE], const unsigned char *key, const unsigned char *setting) { uint32_t salt, r0, r1, keybuf[2]; uint8_t *q; /* * Copy the key, shifting each character up by one bit * and padding with zeros. */ q = (uint8_t *)keybuf; while (q - (uint8_t *)keybuf != 8) { *q = *key << 1; if (*q) key++; q++; } des_setkey(ctx, (char *)keybuf); /* * setting - 2 bytes of salt * key - up to 8 characters */ salt = (ascii_to_bin(setting[1]) << 6) | ascii_to_bin(setting[0]); output[0] = setting[0]; /* * If the encrypted password that the salt was extracted from * is only 1 character long, the salt will be corrupted. We * need to ensure that the output string doesn't have an extra * NUL in it! */ output[1] = setting[1] ? setting[1] : output[0]; setup_salt(ctx, salt); /* Do it. */ do_des(ctx, /*0, 0,*/ &r0, &r1, 25 /* count */); /* Now encode the result. */ #if 0 { uint32_t l = (r0 >> 8); q = (uint8_t *)output + 2; *q++ = ascii64[(l >> 18) & 0x3f]; /* bits 31..26 of r0 */ *q++ = ascii64[(l >> 12) & 0x3f]; /* bits 25..20 of r0 */ *q++ = ascii64[(l >> 6) & 0x3f]; /* bits 19..14 of r0 */ *q++ = ascii64[l & 0x3f]; /* bits 13..8 of r0 */ l = ((r0 << 16) | (r1 >> 16)); *q++ = ascii64[(l >> 18) & 0x3f]; /* bits 7..2 of r0 */ *q++ = ascii64[(l >> 12) & 0x3f]; /* bits 1..2 of r0 and 31..28 of r1 */ *q++ = ascii64[(l >> 6) & 0x3f]; /* bits 27..22 of r1 */ *q++ = ascii64[l & 0x3f]; /* bits 21..16 of r1 */ l = r1 << 2; *q++ = ascii64[(l >> 12) & 0x3f]; /* bits 15..10 of r1 */ *q++ = ascii64[(l >> 6) & 0x3f]; /* bits 9..4 of r1 */ *q++ = ascii64[l & 0x3f]; /* bits 3..0 of r1 + 00 */ *q = 0; } #else /* Each call takes low-order 24 bits and stores 4 chars */ /* bits 31..8 of r0 */ to64_msb_first(output + 2, (r0 >> 8)); /* bits 7..0 of r0 and 31..16 of r1 */ to64_msb_first(output + 6, (r0 << 16) | (r1 >> 16)); /* bits 15..0 of r1 and two zero bits (plus extra zero byte) */ to64_msb_first(output + 10, (r1 << 8)); /* extra zero byte is encoded as '.', fixing it */ output[13] = '\0'; #endif return output; } #undef USE_PRECOMPUTED_u_sbox #undef USE_REPETITIVE_SPEEDUP #undef USE_ip_mask #undef USE_de_keys #undef C #undef init_perm #undef final_perm #undef m_sbox #undef D #undef const_ctx #undef saltbits #undef old_salt #undef old_rawkey0 #undef old_rawkey1 #undef un_pbox #undef inv_comp_perm #undef inv_key_perm #undef en_keysl #undef en_keysr #undef de_keysl #undef de_keysr #undef ip_maskl #undef ip_maskr #undef fp_maskl #undef fp_maskr #undef key_perm_maskl #undef key_perm_maskr #undef comp_maskl #undef comp_maskr #undef psbox