/* * NTP client/server, based on OpenNTPD 3.9p1 * * Author: Adam Tkac * * Licensed under GPLv2, see file LICENSE in this tarball for details. * * Parts of OpenNTPD clock syncronization code is replaced by * code which is based on ntp-4.2.6, whuch carries the following * copyright notice: * *********************************************************************** * * * Copyright (c) University of Delaware 1992-2009 * * * * Permission to use, copy, modify, and distribute this software and * * its documentation for any purpose with or without fee is hereby * * granted, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission * * notice appear in supporting documentation, and that the name * * University of Delaware not be used in advertising or publicity * * pertaining to distribution of the software without specific, * * written prior permission. The University of Delaware makes no * * representations about the suitability this software for any * * purpose. It is provided "as is" without express or implied * * warranty. * * * *********************************************************************** */ #include "libbb.h" #include #include /* For IPTOS_LOWDELAY definition */ #include #ifndef IPTOS_LOWDELAY # define IPTOS_LOWDELAY 0x10 #endif #ifndef IP_PKTINFO # error "Sorry, your kernel has to support IP_PKTINFO" #endif /* Verbosity control (max level of -dddd options accepted). * max 5 is very talkative (and bloated). 2 is non-bloated, * production level setting. */ #define MAX_VERBOSE 2 #define RETRY_INTERVAL 5 /* on error, retry in N secs */ #define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */ #define FREQ_TOLERANCE 0.000015 /* % frequency tolerance (15 PPM) */ #define BURSTPOLL 0 #define MINPOLL 4 /* % minimum poll interval (6: 64 s) */ #define MAXPOLL 12 /* % maximum poll interval (12: 1.1h, 17: 36.4h) (was 17) */ #define MINDISP 0.01 /* % minimum dispersion (s) */ #define MAXDISP 16 /* maximum dispersion (s) */ #define MAXSTRAT 16 /* maximum stratum (infinity metric) */ #define MAXDIST 1 /* % distance threshold (s) */ #define MIN_SELECTED 1 /* % minimum intersection survivors */ #define MIN_CLUSTERED 3 /* % minimum cluster survivors */ #define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */ /* Clock discipline parameters and constants */ #define STEP_THRESHOLD 0.128 /* step threshold (s) */ #define WATCH_THRESHOLD 150 /* stepout threshold (s). std ntpd uses 900 (11 mins (!)) */ /* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */ #define PANIC_THRESHOLD 1000 /* panic threshold (s) */ /* Poll-adjust threshold. * When we see that offset is small enough compared to discipline jitter, * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT, * we poll_exp++. If offset isn't small, counter -= poll_exp*2, * and when it goes below -POLLADJ_LIMIT, we poll_exp-- */ #define POLLADJ_LIMIT 30 /* If offset < POLLADJ_GATE * discipline_jitter, then we can increase * poll interval (we think we can't improve timekeeping * by staying at smaller poll). */ #define POLLADJ_GATE 4 /* Compromise Allan intercept (s). doc uses 1500, std ntpd uses 512 */ #define ALLAN 512 /* PLL loop gain */ #define PLL 65536 /* FLL loop gain [why it depends on MAXPOLL??] */ #define FLL (MAXPOLL + 1) /* Parameter averaging constant */ #define AVG 4 enum { NTP_VERSION = 4, NTP_MAXSTRATUM = 15, NTP_DIGESTSIZE = 16, NTP_MSGSIZE_NOAUTH = 48, NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE), /* Status Masks */ MODE_MASK = (7 << 0), VERSION_MASK = (7 << 3), VERSION_SHIFT = 3, LI_MASK = (3 << 6), /* Leap Second Codes (high order two bits of m_status) */ LI_NOWARNING = (0 << 6), /* no warning */ LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */ LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */ LI_ALARM = (3 << 6), /* alarm condition */ /* Mode values */ MODE_RES0 = 0, /* reserved */ MODE_SYM_ACT = 1, /* symmetric active */ MODE_SYM_PAS = 2, /* symmetric passive */ MODE_CLIENT = 3, /* client */ MODE_SERVER = 4, /* server */ MODE_BROADCAST = 5, /* broadcast */ MODE_RES1 = 6, /* reserved for NTP control message */ MODE_RES2 = 7, /* reserved for private use */ }; //TODO: better base selection #define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */ #define NUM_DATAPOINTS 8 typedef struct { uint32_t int_partl; uint32_t fractionl; } l_fixedpt_t; typedef struct { uint16_t int_parts; uint16_t fractions; } s_fixedpt_t; typedef struct { uint8_t m_status; /* status of local clock and leap info */ uint8_t m_stratum; uint8_t m_ppoll; /* poll value */ int8_t m_precision_exp; s_fixedpt_t m_rootdelay; s_fixedpt_t m_rootdisp; uint32_t m_refid; l_fixedpt_t m_reftime; l_fixedpt_t m_orgtime; l_fixedpt_t m_rectime; l_fixedpt_t m_xmttime; uint32_t m_keyid; uint8_t m_digest[NTP_DIGESTSIZE]; } msg_t; typedef struct { double d_recv_time; double d_offset; double d_dispersion; } datapoint_t; typedef struct { len_and_sockaddr *p_lsa; char *p_dotted; /* when to send new query (if p_fd == -1) * or when receive times out (if p_fd >= 0): */ int p_fd; int datapoint_idx; uint32_t lastpkt_refid; uint8_t lastpkt_status; uint8_t lastpkt_stratum; uint8_t reachable_bits; double next_action_time; double p_xmttime; double lastpkt_recv_time; double lastpkt_delay; double lastpkt_rootdelay; double lastpkt_rootdisp; /* produced by filter algorithm: */ double filter_offset; double filter_dispersion; double filter_jitter; datapoint_t filter_datapoint[NUM_DATAPOINTS]; /* last sent packet: */ msg_t p_xmt_msg; } peer_t; enum { OPT_n = (1 << 0), OPT_q = (1 << 1), OPT_N = (1 << 2), OPT_x = (1 << 3), /* Insert new options above this line. */ /* Non-compat options: */ OPT_p = (1 << 4), OPT_l = (1 << 5) * ENABLE_FEATURE_NTPD_SERVER, }; struct globals { double cur_time; /* total round trip delay to currently selected reference clock */ double rootdelay; /* reference timestamp: time when the system clock was last set or corrected */ double reftime; /* total dispersion to currently selected reference clock */ double rootdisp; llist_t *ntp_peers; #if ENABLE_FEATURE_NTPD_SERVER int listen_fd; #endif unsigned verbose; unsigned peer_cnt; /* refid: 32-bit code identifying the particular server or reference clock * in stratum 0 packets this is a four-character ASCII string, * called the kiss code, used for debugging and monitoring * in stratum 1 packets this is a four-character ASCII string * assigned to the reference clock by IANA. Example: "GPS " * in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6 */ uint32_t refid; uint8_t ntp_status; /* precision is defined as the larger of the resolution and time to * read the clock, in log2 units. For instance, the precision of a * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the * system clock hardware representation is to the nanosecond. * * Delays, jitters of various kinds are clamper down to precision. * * If precision_sec is too large, discipline_jitter gets clamped to it * and if offset is much smaller than discipline_jitter, poll interval * grows even though we really can benefit from staying at smaller one, * collecting non-lagged datapoits and correcting the offset. * (Lagged datapoits exist when poll_exp is large but we still have * systematic offset error - the time distance between datapoints * is significat and older datapoints have smaller offsets. * This makes our offset estimation a bit smaller than reality) * Due to this effect, setting G_precision_sec close to * STEP_THRESHOLD isn't such a good idea - offsets may grow * too big and we will step. I observed it with -6. * * OTOH, setting precision too small would result in futile attempts * to syncronize to the unachievable precision. * * -6 is 1/64 sec, -7 is 1/128 sec and so on. */ #define G_precision_exp -8 #define G_precision_sec (1.0 / (1 << (- G_precision_exp))) uint8_t stratum; /* Bool. After set to 1, never goes back to 0: */ smallint adjtimex_was_done; smallint initial_poll_complete; uint8_t discipline_state; // doc calls it c.state uint8_t poll_exp; // s.poll int polladj_count; // c.count long kernel_freq_drift; double last_update_offset; // c.last double last_update_recv_time; // s.t double discipline_jitter; // c.jitter //TODO: add s.jitter - grep for it here and see clock_combine() in doc #define USING_KERNEL_PLL_LOOP 1 #if !USING_KERNEL_PLL_LOOP double discipline_freq_drift; // c.freq //TODO: conditionally calculate wander? it's used only for logging double discipline_wander; // c.wander #endif }; #define G (*ptr_to_globals) static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY; #define VERB1 if (MAX_VERBOSE && G.verbose) #define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2) #define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3) #define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4) #define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5) static double LOG2D(int a) { if (a < 0) return 1.0 / (1UL << -a); return 1UL << a; } static ALWAYS_INLINE double SQUARE(double x) { return x * x; } static ALWAYS_INLINE double MAXD(double a, double b) { if (a > b) return a; return b; } static ALWAYS_INLINE double MIND(double a, double b) { if (a < b) return a; return b; } static NOINLINE double my_SQRT(double X) { union { float f; int32_t i; } v; double invsqrt; double Xhalf = X * 0.5; /* Fast and good approximation to 1/sqrt(X), black magic */ v.f = X; /*v.i = 0x5f3759df - (v.i >> 1);*/ v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */ invsqrt = v.f; /* better than 0.2% accuracy */ /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0) * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X)) * f'(x) = -2/(x*x*x) * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0) */ invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */ /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */ /* With 4 iterations, more than half results will be exact, * at 6th iterations result stabilizes with about 72% results exact. * We are well satisfied with 0.05% accuracy. */ return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */ } static ALWAYS_INLINE double SQRT(double X) { /* If this arch doesn't use IEEE 754 floats, fall back to using libm */ if (sizeof(float) != 4) return sqrt(X); /* This avoids needing libm, saves about 1.2k on x86-32 */ return my_SQRT(X); } static double gettime1900d(void) { struct timeval tv; gettimeofday(&tv, NULL); /* never fails */ G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970; return G.cur_time; } static void d_to_tv(double d, struct timeval *tv) { tv->tv_sec = (long)d; tv->tv_usec = (d - tv->tv_sec) * 1000000; } static double lfp_to_d(l_fixedpt_t lfp) { double ret; lfp.int_partl = ntohl(lfp.int_partl); lfp.fractionl = ntohl(lfp.fractionl); ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX); return ret; } static double sfp_to_d(s_fixedpt_t sfp) { double ret; sfp.int_parts = ntohs(sfp.int_parts); sfp.fractions = ntohs(sfp.fractions); ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX); return ret; } #if ENABLE_FEATURE_NTPD_SERVER static l_fixedpt_t d_to_lfp(double d) { l_fixedpt_t lfp; lfp.int_partl = (uint32_t)d; lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX); lfp.int_partl = htonl(lfp.int_partl); lfp.fractionl = htonl(lfp.fractionl); return lfp; } static s_fixedpt_t d_to_sfp(double d) { s_fixedpt_t sfp; sfp.int_parts = (uint16_t)d; sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX); sfp.int_parts = htons(sfp.int_parts); sfp.fractions = htons(sfp.fractions); return sfp; } #endif static double dispersion(const datapoint_t *dp) { return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time); } static double root_distance(peer_t *p) { /* The root synchronization distance is the maximum error due to * all causes of the local clock relative to the primary server. * It is defined as half the total delay plus total dispersion * plus peer jitter. */ return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2 + p->lastpkt_rootdisp + p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + p->filter_jitter; } static void set_next(peer_t *p, unsigned t) { p->next_action_time = G.cur_time + t; } /* * Peer clock filter and its helpers */ static void filter_datapoints(peer_t *p) { int i, idx; int got_newest; double minoff, maxoff, wavg, sum, w; double x = x; /* for compiler */ double oldest_off = oldest_off; double oldest_age = oldest_age; double newest_off = newest_off; double newest_age = newest_age; minoff = maxoff = p->filter_datapoint[0].d_offset; for (i = 1; i < NUM_DATAPOINTS; i++) { if (minoff > p->filter_datapoint[i].d_offset) minoff = p->filter_datapoint[i].d_offset; if (maxoff < p->filter_datapoint[i].d_offset) maxoff = p->filter_datapoint[i].d_offset; } idx = p->datapoint_idx; /* most recent datapoint */ /* Average offset: * Drop two outliers and take weighted average of the rest: * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32 * we use older6/32, not older6/64 since sum of weights should be 1: * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1 */ wavg = 0; w = 0.5; /* n-1 * --- dispersion(i) * filter_dispersion = \ ------------- * / (i+1) * --- 2 * i=0 */ got_newest = 0; sum = 0; for (i = 0; i < NUM_DATAPOINTS; i++) { VERB4 { bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s", i, p->filter_datapoint[idx].d_offset, p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx]), G.cur_time - p->filter_datapoint[idx].d_recv_time, (minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset) ? " (outlier by offset)" : "" ); } sum += dispersion(&p->filter_datapoint[idx]) / (2 << i); if (minoff == p->filter_datapoint[idx].d_offset) { minoff -= 1; /* so that we don't match it ever again */ } else if (maxoff == p->filter_datapoint[idx].d_offset) { maxoff += 1; } else { oldest_off = p->filter_datapoint[idx].d_offset; oldest_age = G.cur_time - p->filter_datapoint[idx].d_recv_time; if (!got_newest) { got_newest = 1; newest_off = oldest_off; newest_age = oldest_age; } x = oldest_off * w; wavg += x; w /= 2; } idx = (idx - 1) & (NUM_DATAPOINTS - 1); } p->filter_dispersion = sum; wavg += x; /* add another older6/64 to form older6/32 */ /* Fix systematic underestimation with large poll intervals. * Imagine that we still have a bit of uncorrected drift, * and poll interval is big (say, 100 sec). Offsets form a progression: * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent. * The algorithm above drops 0.0 and 0.7 as outliers, * and then we have this estimation, ~25% off from 0.7: * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125 */ x = oldest_age - newest_age; if (x != 0) { x = newest_age / x; /* in above example, 100 / (600 - 100) */ if (x < 1) { /* paranoia check */ x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */ wavg += x; } } p->filter_offset = wavg; /* +----- -----+ ^ 1/2 * | n-1 | * | --- | * | 1 \ 2 | * filter_jitter = | --- * / (avg-offset_j) | * | n --- | * | j=0 | * +----- -----+ * where n is the number of valid datapoints in the filter (n > 1); * if filter_jitter < precision then filter_jitter = precision */ sum = 0; for (i = 0; i < NUM_DATAPOINTS; i++) { sum += SQUARE(wavg - p->filter_datapoint[i].d_offset); } sum = SQRT(sum / NUM_DATAPOINTS); p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec; VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f", p->filter_offset, x, p->filter_dispersion, p->filter_jitter); } static void reset_peer_stats(peer_t *p, double offset) { int i; for (i = 0; i < NUM_DATAPOINTS; i++) { if (offset < 16 * STEP_THRESHOLD) { p->filter_datapoint[i].d_recv_time -= offset; if (p->filter_datapoint[i].d_offset != 0) { p->filter_datapoint[i].d_offset -= offset; } } else { p->filter_datapoint[i].d_recv_time = G.cur_time; p->filter_datapoint[i].d_offset = 0; p->filter_datapoint[i].d_dispersion = MAXDISP; } } if (offset < 16 * STEP_THRESHOLD) { p->lastpkt_recv_time -= offset; } else { p->reachable_bits = 0; p->lastpkt_recv_time = G.cur_time; } filter_datapoints(p); /* recalc p->filter_xxx */ p->next_action_time -= offset; VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time); } static void add_peers(char *s) { peer_t *p; p = xzalloc(sizeof(*p)); p->p_lsa = xhost2sockaddr(s, 123); p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa); p->p_fd = -1; p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3); p->next_action_time = G.cur_time; /* = set_next(p, 0); */ reset_peer_stats(p, 16 * STEP_THRESHOLD); llist_add_to(&G.ntp_peers, p); G.peer_cnt++; } static int do_sendto(int fd, const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen, msg_t *msg, ssize_t len) { ssize_t ret; errno = 0; if (!from) { ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen); } else { ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen); } if (ret != len) { bb_perror_msg("send failed"); return -1; } return 0; } static void send_query_to_peer(peer_t *p) { /* Why do we need to bind()? * See what happens when we don't bind: * * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0 * gettimeofday({1259071266, 327885}, NULL) = 0 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48 * ^^^ we sent it from some source port picked by kernel. * time(NULL) = 1259071266 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}]) * recv(3, "yyy", 68, MSG_DONTWAIT) = 48 * ^^^ this recv will receive packets to any local port! * * Uncomment this and use strace to see it in action: */ #define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */ if (p->p_fd == -1) { int fd, family; len_and_sockaddr *local_lsa; family = p->p_lsa->u.sa.sa_family; p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM); /* local_lsa has "null" address and port 0 now. * bind() ensures we have a *particular port* selected by kernel * and remembered in p->p_fd, thus later recv(p->p_fd) * receives only packets sent to this port. */ PROBE_LOCAL_ADDR xbind(fd, &local_lsa->u.sa, local_lsa->len); PROBE_LOCAL_ADDR #if ENABLE_FEATURE_IPV6 if (family == AF_INET) #endif setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY)); free(local_lsa); } /* * Send out a random 64-bit number as our transmit time. The NTP * server will copy said number into the originate field on the * response that it sends us. This is totally legal per the SNTP spec. * * The impact of this is two fold: we no longer send out the current * system time for the world to see (which may aid an attacker), and * it gives us a (not very secure) way of knowing that we're not * getting spoofed by an attacker that can't capture our traffic * but can spoof packets from the NTP server we're communicating with. * * Save the real transmit timestamp locally. */ p->p_xmt_msg.m_xmttime.int_partl = random(); p->p_xmt_msg.m_xmttime.fractionl = random(); p->p_xmttime = gettime1900d(); if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len, &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1 ) { close(p->p_fd); p->p_fd = -1; set_next(p, RETRY_INTERVAL); return; } p->reachable_bits <<= 1; VERB1 bb_error_msg("sent query to %s", p->p_dotted); set_next(p, RESPONSE_INTERVAL); } static NOINLINE void step_time(double offset) { llist_t *item; double dtime; struct timeval tv; char buf[80]; time_t tval; gettimeofday(&tv, NULL); /* never fails */ dtime = offset + tv.tv_sec; dtime += 1.0e-6 * tv.tv_usec; d_to_tv(dtime, &tv); if (settimeofday(&tv, NULL) == -1) bb_perror_msg_and_die("settimeofday"); tval = tv.tv_sec; strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval)); bb_error_msg("setting clock to %s (offset %fs)", buf, offset); /* Correct various fields which contain time-relative values: */ /* p->lastpkt_recv_time, p->next_action_time and such: */ for (item = G.ntp_peers; item != NULL; item = item->link) { peer_t *pp = (peer_t *) item->data; reset_peer_stats(pp, offset); } /* Globals: */ G.cur_time -= offset; G.last_update_recv_time -= offset; } /* * Selection and clustering, and their helpers */ typedef struct { peer_t *p; int type; double edge; } point_t; static int compare_point_edge(const void *aa, const void *bb) { const point_t *a = aa; const point_t *b = bb; if (a->edge < b->edge) { return -1; } return (a->edge > b->edge); } typedef struct { peer_t *p; double metric; } survivor_t; static int compare_survivor_metric(const void *aa, const void *bb) { const survivor_t *a = aa; const survivor_t *b = bb; if (a->metric < b->metric) { return -1; } return (a->metric > b->metric); } static int fit(peer_t *p, double rd) { if ((p->reachable_bits & (p->reachable_bits-1)) == 0) { /* One or zero bits in reachable_bits */ VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted); return 0; } #if 0 /* we filter out such packets earlier */ if ((p->lastpkt_status & LI_ALARM) == LI_ALARM || p->lastpkt_stratum >= MAXSTRAT ) { VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted); return 0; } #endif /* rd is root_distance(p) */ if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) { VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted); return 0; } //TODO // /* Do we have a loop? */ // if (p->refid == p->dstaddr || p->refid == s.refid) // return 0; return 1; } static peer_t* select_and_cluster(void) { llist_t *item; int i, j; int size = 3 * G.peer_cnt; /* for selection algorithm */ point_t point[size]; unsigned num_points, num_candidates; double low, high; unsigned num_falsetickers; /* for cluster algorithm */ survivor_t survivor[size]; unsigned num_survivors; /* Selection */ num_points = 0; item = G.ntp_peers; if (G.initial_poll_complete) while (item != NULL) { peer_t *p = (peer_t *) item->data; double rd = root_distance(p); double offset = p->filter_offset; if (!fit(p, rd)) { item = item->link; continue; } VERB4 bb_error_msg("interval: [%f %f %f] %s", offset - rd, offset, offset + rd, p->p_dotted ); point[num_points].p = p; point[num_points].type = -1; point[num_points].edge = offset - rd; num_points++; point[num_points].p = p; point[num_points].type = 0; point[num_points].edge = offset; num_points++; point[num_points].p = p; point[num_points].type = 1; point[num_points].edge = offset + rd; num_points++; item = item->link; } num_candidates = num_points / 3; if (num_candidates == 0) { VERB3 bb_error_msg("no valid datapoints, no peer selected"); return NULL; } //TODO: sorting does not seem to be done in reference code qsort(point, num_points, sizeof(point[0]), compare_point_edge); /* Start with the assumption that there are no falsetickers. * Attempt to find a nonempty intersection interval containing * the midpoints of all truechimers. * If a nonempty interval cannot be found, increase the number * of assumed falsetickers by one and try again. * If a nonempty interval is found and the number of falsetickers * is less than the number of truechimers, a majority has been found * and the midpoint of each truechimer represents * the candidates available to the cluster algorithm. */ num_falsetickers = 0; while (1) { int c; unsigned num_midpoints = 0; low = 1 << 9; high = - (1 << 9); c = 0; for (i = 0; i < num_points; i++) { /* We want to do: * if (point[i].type == -1) c++; * if (point[i].type == 1) c--; * and it's simpler to do it this way: */ c -= point[i].type; if (c >= num_candidates - num_falsetickers) { /* If it was c++ and it got big enough... */ low = point[i].edge; break; } if (point[i].type == 0) num_midpoints++; } c = 0; for (i = num_points-1; i >= 0; i--) { c += point[i].type; if (c >= num_candidates - num_falsetickers) { high = point[i].edge; break; } if (point[i].type == 0) num_midpoints++; } /* If the number of midpoints is greater than the number * of allowed falsetickers, the intersection contains at * least one truechimer with no midpoint - bad. * Also, interval should be nonempty. */ if (num_midpoints <= num_falsetickers && low < high) break; num_falsetickers++; if (num_falsetickers * 2 >= num_candidates) { VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected", num_falsetickers, num_candidates); return NULL; } } VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d", low, high, num_candidates, num_falsetickers); /* Clustering */ /* Construct a list of survivors (p, metric) * from the chime list, where metric is dominated * first by stratum and then by root distance. * All other things being equal, this is the order of preference. */ num_survivors = 0; for (i = 0; i < num_points; i++) { peer_t *p; if (point[i].edge < low || point[i].edge > high) continue; p = point[i].p; survivor[num_survivors].p = p; //TODO: save root_distance in point_t and reuse here? survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + root_distance(p); VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s", num_survivors, survivor[num_survivors].metric, p->p_dotted); num_survivors++; } /* There must be at least MIN_SELECTED survivors to satisfy the * correctness assertions. Ordinarily, the Byzantine criteria * require four survivors, but for the demonstration here, one * is acceptable. */ if (num_survivors < MIN_SELECTED) { VERB3 bb_error_msg("num_survivors %d < %d, no peer selected", num_survivors, MIN_SELECTED); return NULL; } //looks like this is ONLY used by the fact that later we pick survivor[0]. //we can avoid sorting then, just find the minimum once! qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric); /* For each association p in turn, calculate the selection * jitter p->sjitter as the square root of the sum of squares * (p->offset - q->offset) over all q associations. The idea is * to repeatedly discard the survivor with maximum selection * jitter until a termination condition is met. */ while (1) { unsigned max_idx = max_idx; double max_selection_jitter = max_selection_jitter; double min_jitter = min_jitter; if (num_survivors <= MIN_CLUSTERED) { bb_error_msg("num_survivors %d <= %d, not discarding more", num_survivors, MIN_CLUSTERED); break; } /* To make sure a few survivors are left * for the clustering algorithm to chew on, * we stop if the number of survivors * is less than or equal to MIN_CLUSTERED (3). */ for (i = 0; i < num_survivors; i++) { double selection_jitter_sq; peer_t *p = survivor[i].p; if (i == 0 || p->filter_jitter < min_jitter) min_jitter = p->filter_jitter; selection_jitter_sq = 0; for (j = 0; j < num_survivors; j++) { peer_t *q = survivor[j].p; selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset); } if (i == 0 || selection_jitter_sq > max_selection_jitter) { max_selection_jitter = selection_jitter_sq; max_idx = i; } VERB5 bb_error_msg("survivor %d selection_jitter^2:%f", i, selection_jitter_sq); } max_selection_jitter = SQRT(max_selection_jitter / num_survivors); VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f", max_idx, max_selection_jitter, min_jitter); /* If the maximum selection jitter is less than the * minimum peer jitter, then tossing out more survivors * will not lower the minimum peer jitter, so we might * as well stop. */ if (max_selection_jitter < min_jitter) { VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more", max_selection_jitter, min_jitter, num_survivors); break; } /* Delete survivor[max_idx] from the list * and go around again. */ VERB5 bb_error_msg("dropping survivor %d", max_idx); num_survivors--; while (max_idx < num_survivors) { survivor[max_idx] = survivor[max_idx + 1]; max_idx++; } } /* Pick the best clock. If the old system peer is on the list * and at the same stratum as the first survivor on the list, * then don't do a clock hop. Otherwise, select the first * survivor on the list as the new system peer. */ //TODO - see clock_combine() VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f", survivor[0].p->p_dotted, survivor[0].p->filter_offset, G.cur_time - survivor[0].p->lastpkt_recv_time ); return survivor[0].p; } /* * Local clock discipline and its helpers */ static void set_new_values(int disc_state, double offset, double recv_time) { /* Enter new state and set state variables. Note we use the time * of the last clock filter sample, which must be earlier than * the current time. */ VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f", disc_state, offset, recv_time); G.discipline_state = disc_state; G.last_update_offset = offset; G.last_update_recv_time = recv_time; } /* Clock state definitions */ #define STATE_NSET 0 /* initial state, "nothing is set" */ #define STATE_FSET 1 /* frequency set from file */ #define STATE_SPIK 2 /* spike detected */ #define STATE_FREQ 3 /* initial frequency */ #define STATE_SYNC 4 /* clock synchronized (normal operation) */ /* Return: -1: decrease poll interval, 0: leave as is, 1: increase */ static NOINLINE int update_local_clock(peer_t *p) { int rc; long old_tmx_offset; struct timex tmx; double offset = p->filter_offset; double recv_time = p->lastpkt_recv_time; double abs_offset; #if !USING_KERNEL_PLL_LOOP double freq_drift; #endif double since_last_update; double etemp, dtemp; abs_offset = fabs(offset); /* If the offset is too large, give up and go home */ if (abs_offset > PANIC_THRESHOLD) { bb_error_msg_and_die("offset %f far too big, exiting", offset); } /* If this is an old update, for instance as the result * of a system peer change, avoid it. We never use * an old sample or the same sample twice. */ if (recv_time <= G.last_update_recv_time) { VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it", G.last_update_recv_time, recv_time); return 0; /* "leave poll interval as is" */ } /* Clock state machine transition function. This is where the * action is and defines how the system reacts to large time * and frequency errors. */ since_last_update = recv_time - G.reftime; #if !USING_KERNEL_PLL_LOOP freq_drift = 0; #endif if (G.discipline_state == STATE_FREQ) { /* Ignore updates until the stepout threshold */ if (since_last_update < WATCH_THRESHOLD) { VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains", WATCH_THRESHOLD - since_last_update); return 0; /* "leave poll interval as is" */ } #if !USING_KERNEL_PLL_LOOP freq_drift = (offset - G.last_update_offset) / since_last_update; #endif } /* There are two main regimes: when the * offset exceeds the step threshold and when it does not. */ if (abs_offset > STEP_THRESHOLD) { switch (G.discipline_state) { case STATE_SYNC: /* The first outlyer: ignore it, switch to SPIK state */ VERB3 bb_error_msg("offset:%f - spike detected", offset); G.discipline_state = STATE_SPIK; return -1; /* "decrease poll interval" */ case STATE_SPIK: /* Ignore succeeding outlyers until either an inlyer * is found or the stepout threshold is exceeded. */ if (since_last_update < WATCH_THRESHOLD) { VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains", WATCH_THRESHOLD - since_last_update); return -1; /* "decrease poll interval" */ } /* fall through: we need to step */ } /* switch */ /* Step the time and clamp down the poll interval. * * In NSET state an initial frequency correction is * not available, usually because the frequency file has * not yet been written. Since the time is outside the * capture range, the clock is stepped. The frequency * will be set directly following the stepout interval. * * In FSET state the initial frequency has been set * from the frequency file. Since the time is outside * the capture range, the clock is stepped immediately, * rather than after the stepout interval. Guys get * nervous if it takes 17 minutes to set the clock for * the first time. * * In SPIK state the stepout threshold has expired and * the phase is still above the step threshold. Note * that a single spike greater than the step threshold * is always suppressed, even at the longer poll * intervals. */ VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset); step_time(offset); if (option_mask32 & OPT_q) { /* We were only asked to set time once. Done. */ exit(0); } G.polladj_count = 0; G.poll_exp = MINPOLL; G.stratum = MAXSTRAT; if (G.discipline_state == STATE_NSET) { set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time); return 1; /* "ok to increase poll interval" */ } set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time); } else { /* abs_offset <= STEP_THRESHOLD */ if (G.poll_exp < MINPOLL && G.initial_poll_complete) { VERB3 bb_error_msg("small offset:%f, disabling burst mode", offset); G.polladj_count = 0; G.poll_exp = MINPOLL; } /* Compute the clock jitter as the RMS of exponentially * weighted offset differences. Used by the poll adjust code. */ etemp = SQUARE(G.discipline_jitter); dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec)); G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG); VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter); switch (G.discipline_state) { case STATE_NSET: if (option_mask32 & OPT_q) { /* We were only asked to set time once. * The clock is precise enough, no need to step. */ exit(0); } /* This is the first update received and the frequency * has not been initialized. The first thing to do * is directly measure the oscillator frequency. */ set_new_values(STATE_FREQ, offset, recv_time); VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored"); return 0; /* "leave poll interval as is" */ #if 0 /* this is dead code for now */ case STATE_FSET: /* This is the first update and the frequency * has been initialized. Adjust the phase, but * don't adjust the frequency until the next update. */ set_new_values(STATE_SYNC, offset, recv_time); /* freq_drift remains 0 */ break; #endif case STATE_FREQ: /* since_last_update >= WATCH_THRESHOLD, we waited enough. * Correct the phase and frequency and switch to SYNC state. * freq_drift was already estimated (see code above) */ set_new_values(STATE_SYNC, offset, recv_time); break; default: #if !USING_KERNEL_PLL_LOOP /* Compute freq_drift due to PLL and FLL contributions. * * The FLL and PLL frequency gain constants * depend on the poll interval and Allan * intercept. The FLL is not used below one-half * the Allan intercept. Above that the loop gain * increases in steps to 1 / AVG. */ if ((1 << G.poll_exp) > ALLAN / 2) { etemp = FLL - G.poll_exp; if (etemp < AVG) etemp = AVG; freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp); } /* For the PLL the integration interval * (numerator) is the minimum of the update * interval and poll interval. This allows * oversampling, but not undersampling. */ etemp = MIND(since_last_update, (1 << G.poll_exp)); dtemp = (4 * PLL) << G.poll_exp; freq_drift += offset * etemp / SQUARE(dtemp); #endif set_new_values(STATE_SYNC, offset, recv_time); break; } G.stratum = p->lastpkt_stratum + 1; } G.reftime = G.cur_time; G.ntp_status = p->lastpkt_status; G.refid = p->lastpkt_refid; G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay; dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(s.jitter)); dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP); G.rootdisp = p->lastpkt_rootdisp + dtemp; VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted); /* We are in STATE_SYNC now, but did not do adjtimex yet. * (Any other state does not reach this, they all return earlier) * By this time, freq_drift and G.last_update_offset are set * to values suitable for adjtimex. */ #if !USING_KERNEL_PLL_LOOP /* Calculate the new frequency drift and frequency stability (wander). * Compute the clock wander as the RMS of exponentially weighted * frequency differences. This is not used directly, but can, * along with the jitter, be a highly useful monitoring and * debugging tool. */ dtemp = G.discipline_freq_drift + freq_drift; G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT); etemp = SQUARE(G.discipline_wander); dtemp = SQUARE(dtemp); G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG); VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f", G.discipline_freq_drift, (long)(G.discipline_freq_drift * 65536e6), freq_drift, G.discipline_wander); #endif VERB3 { memset(&tmx, 0, sizeof(tmx)); if (adjtimex(&tmx) < 0) bb_perror_msg_and_die("adjtimex"); VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x", tmx.freq, tmx.offset, tmx.constant, tmx.status); } old_tmx_offset = 0; if (!G.adjtimex_was_done) { G.adjtimex_was_done = 1; /* When we use adjtimex for the very first time, * we need to ADD to pre-existing tmx.offset - it may be !0 */ memset(&tmx, 0, sizeof(tmx)); if (adjtimex(&tmx) < 0) bb_perror_msg_and_die("adjtimex"); old_tmx_offset = tmx.offset; } memset(&tmx, 0, sizeof(tmx)); #if 0 //doesn't work, offset remains 0 (!) in kernel: //ntpd: set adjtimex freq:1786097 tmx.offset:77487 //ntpd: prev adjtimex freq:1786097 tmx.offset:0 //ntpd: cur adjtimex freq:1786097 tmx.offset:0 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET; /* 65536 is one ppm */ tmx.freq = G.discipline_freq_drift * 65536e6; tmx.offset = G.last_update_offset * 1000000; /* usec */ #endif tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR; tmx.offset = (G.last_update_offset * 1000000) /* usec */ /* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */ + old_tmx_offset; /* almost always 0 */ tmx.status = STA_PLL; if (G.ntp_status & LI_PLUSSEC) tmx.status |= STA_INS; if (G.ntp_status & LI_MINUSSEC) tmx.status |= STA_DEL; tmx.constant = G.poll_exp - 4; //tmx.esterror = (u_int32)(clock_jitter * 1e6); //tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6); rc = adjtimex(&tmx); if (rc < 0) bb_perror_msg_and_die("adjtimex"); /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4. * Not sure why. Perhaps it is normal. */ VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x", rc, tmx.freq, tmx.offset, tmx.constant, tmx.status); #if 0 VERB3 { /* always gives the same output as above msg */ memset(&tmx, 0, sizeof(tmx)); if (adjtimex(&tmx) < 0) bb_perror_msg_and_die("adjtimex"); VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x", tmx.freq, tmx.offset, tmx.constant, tmx.status); } #endif if (G.kernel_freq_drift != tmx.freq / 65536) { G.kernel_freq_drift = tmx.freq / 65536; VERB2 bb_error_msg("kernel clock drift: %ld ppm", G.kernel_freq_drift); } return 1; /* "ok to increase poll interval" */ } /* * We've got a new reply packet from a peer, process it * (helpers first) */ static unsigned retry_interval(void) { /* Local problem, want to retry soon */ unsigned interval, r; interval = RETRY_INTERVAL; r = random(); interval += r % (unsigned)(RETRY_INTERVAL / 4); VERB3 bb_error_msg("chose retry interval:%u", interval); return interval; } static unsigned poll_interval(int exponent) { unsigned interval, r; exponent = G.poll_exp + exponent; if (exponent < 0) exponent = 0; interval = 1 << exponent; r = random(); interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */ VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent); return interval; } static NOINLINE void recv_and_process_peer_pkt(peer_t *p) { int rc; ssize_t size; msg_t msg; double T1, T2, T3, T4; unsigned interval; datapoint_t *datapoint; peer_t *q; /* We can recvfrom here and check from.IP, but some multihomed * ntp servers reply from their *other IP*. * TODO: maybe we should check at least what we can: from.port == 123? */ size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT); if (size == -1) { bb_perror_msg("recv(%s) error", p->p_dotted); if (errno == EHOSTUNREACH || errno == EHOSTDOWN || errno == ENETUNREACH || errno == ENETDOWN || errno == ECONNREFUSED || errno == EADDRNOTAVAIL || errno == EAGAIN ) { //TODO: always do this? set_next(p, retry_interval()); goto close_sock; } xfunc_die(); } if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) { bb_error_msg("malformed packet received from %s", p->p_dotted); goto bail; } if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl ) { goto bail; } if ((msg.m_status & LI_ALARM) == LI_ALARM || msg.m_stratum == 0 || msg.m_stratum > NTP_MAXSTRATUM ) { // TODO: stratum 0 responses may have commands in 32-bit m_refid field: // "DENY", "RSTR" - peer does not like us at all // "RATE" - peer is overloaded, reduce polling freq interval = poll_interval(0); bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval); goto close_sock; } // /* Verify valid root distance */ // if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt) // return; /* invalid header values */ p->lastpkt_status = msg.m_status; p->lastpkt_stratum = msg.m_stratum; p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay); p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp); p->lastpkt_refid = msg.m_refid; /* * From RFC 2030 (with a correction to the delay math): * * Timestamp Name ID When Generated * ------------------------------------------------------------ * Originate Timestamp T1 time request sent by client * Receive Timestamp T2 time request received by server * Transmit Timestamp T3 time reply sent by server * Destination Timestamp T4 time reply received by client * * The roundtrip delay and local clock offset are defined as * * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2 */ T1 = p->p_xmttime; T2 = lfp_to_d(msg.m_rectime); T3 = lfp_to_d(msg.m_xmttime); T4 = G.cur_time; p->lastpkt_recv_time = T4; VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time); p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0; datapoint = &p->filter_datapoint[p->datapoint_idx]; datapoint->d_recv_time = T4; datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2; /* The delay calculation is a special case. In cases where the * server and client clocks are running at different rates and * with very fast networks, the delay can appear negative. In * order to avoid violating the Principle of Least Astonishment, * the delay is clamped not less than the system precision. */ p->lastpkt_delay = (T4 - T1) - (T3 - T2); if (p->lastpkt_delay < G_precision_sec) p->lastpkt_delay = G_precision_sec; datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec; if (!p->reachable_bits) { /* 1st datapoint ever - replicate offset in every element */ int i; for (i = 1; i < NUM_DATAPOINTS; i++) { p->filter_datapoint[i].d_offset = datapoint->d_offset; } } p->reachable_bits |= 1; VERB1 { bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f", p->p_dotted, p->reachable_bits, datapoint->d_offset, p->lastpkt_delay); } /* Muck with statictics and update the clock */ filter_datapoints(p); q = select_and_cluster(); rc = -1; if (q) rc = update_local_clock(q); if (rc != 0) { /* Adjust the poll interval by comparing the current offset * with the clock jitter. If the offset is less than * the clock jitter times a constant, then the averaging interval * is increased, otherwise it is decreased. A bit of hysteresis * helps calm the dance. Works best using burst mode. */ VERB4 if (rc > 0) { bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s", q->filter_offset, POLLADJ_GATE * G.discipline_jitter, fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter ? "grows" : "falls" ); } if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) { /* was += G.poll_exp but it is a bit * too optimistic for my taste at high poll_exp's */ G.polladj_count += MINPOLL; if (G.polladj_count > POLLADJ_LIMIT) { G.polladj_count = 0; if (G.poll_exp < MAXPOLL) { G.poll_exp++; VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d", G.discipline_jitter, G.poll_exp); } } else { VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count); } } else { G.polladj_count -= G.poll_exp * 2; if (G.polladj_count < -POLLADJ_LIMIT) { G.polladj_count = 0; if (G.poll_exp > MINPOLL) { llist_t *item; G.poll_exp--; /* Correct p->next_action_time in each peer * which waits for sending, so that they send earlier. * Old pp->next_action_time are on the order * of t + (1 << old_poll_exp) + small_random, * we simply need to subtract ~half of that. */ for (item = G.ntp_peers; item != NULL; item = item->link) { peer_t *pp = (peer_t *) item->data; if (pp->p_fd < 0) pp->next_action_time -= (1 << G.poll_exp); } VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d", G.discipline_jitter, G.poll_exp); } } else { VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count); } } } /* Decide when to send new query for this peer */ interval = poll_interval(0); set_next(p, interval); close_sock: /* We do not expect any more packets from this peer for now. * Closing the socket informs kernel about it. * We open a new socket when we send a new query. */ close(p->p_fd); p->p_fd = -1; bail: return; } #if ENABLE_FEATURE_NTPD_SERVER static NOINLINE void recv_and_process_client_pkt(void /*int fd*/) { ssize_t size; uint8_t version; len_and_sockaddr *to; struct sockaddr *from; msg_t msg; uint8_t query_status; l_fixedpt_t query_xmttime; to = get_sock_lsa(G.listen_fd); from = xzalloc(to->len); size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len); if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) { char *addr; if (size < 0) { if (errno == EAGAIN) goto bail; bb_perror_msg_and_die("recv"); } addr = xmalloc_sockaddr2dotted_noport(from); bb_error_msg("malformed packet received from %s: size %u", addr, (int)size); free(addr); goto bail; } query_status = msg.m_status; query_xmttime = msg.m_xmttime; /* Build a reply packet */ memset(&msg, 0, sizeof(msg)); msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM; msg.m_status |= (query_status & VERSION_MASK); msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ? MODE_SERVER : MODE_SYM_PAS; msg.m_stratum = G.stratum; msg.m_ppoll = G.poll_exp; msg.m_precision_exp = G_precision_exp; /* this time was obtained between poll() and recv() */ msg.m_rectime = d_to_lfp(G.cur_time); msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */ msg.m_reftime = d_to_lfp(G.reftime); msg.m_orgtime = query_xmttime; msg.m_rootdelay = d_to_sfp(G.rootdelay); //simple code does not do this, fix simple code! msg.m_rootdisp = d_to_sfp(G.rootdisp); version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */ msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3; /* We reply from the local address packet was sent to, * this makes to/from look swapped here: */ do_sendto(G.listen_fd, /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len, &msg, size); bail: free(to); free(from); } #endif /* Upstream ntpd's options: * * -4 Force DNS resolution of host names to the IPv4 namespace. * -6 Force DNS resolution of host names to the IPv6 namespace. * -a Require cryptographic authentication for broadcast client, * multicast client and symmetric passive associations. * This is the default. * -A Do not require cryptographic authentication for broadcast client, * multicast client and symmetric passive associations. * This is almost never a good idea. * -b Enable the client to synchronize to broadcast servers. * -c conffile * Specify the name and path of the configuration file, * default /etc/ntp.conf * -d Specify debugging mode. This option may occur more than once, * with each occurrence indicating greater detail of display. * -D level * Specify debugging level directly. * -f driftfile * Specify the name and path of the frequency file. * This is the same operation as the "driftfile FILE" * configuration command. * -g Normally, ntpd exits with a message to the system log * if the offset exceeds the panic threshold, which is 1000 s * by default. This option allows the time to be set to any value * without restriction; however, this can happen only once. * If the threshold is exceeded after that, ntpd will exit * with a message to the system log. This option can be used * with the -q and -x options. See the tinker command for other options. * -i jaildir * Chroot the server to the directory jaildir. This option also implies * that the server attempts to drop root privileges at startup * (otherwise, chroot gives very little additional security). * You may need to also specify a -u option. * -k keyfile * Specify the name and path of the symmetric key file, * default /etc/ntp/keys. This is the same operation * as the "keys FILE" configuration command. * -l logfile * Specify the name and path of the log file. The default * is the system log file. This is the same operation as * the "logfile FILE" configuration command. * -L Do not listen to virtual IPs. The default is to listen. * -n Don't fork. * -N To the extent permitted by the operating system, * run the ntpd at the highest priority. * -p pidfile * Specify the name and path of the file used to record the ntpd * process ID. This is the same operation as the "pidfile FILE" * configuration command. * -P priority * To the extent permitted by the operating system, * run the ntpd at the specified priority. * -q Exit the ntpd just after the first time the clock is set. * This behavior mimics that of the ntpdate program, which is * to be retired. The -g and -x options can be used with this option. * Note: The kernel time discipline is disabled with this option. * -r broadcastdelay * Specify the default propagation delay from the broadcast/multicast * server to this client. This is necessary only if the delay * cannot be computed automatically by the protocol. * -s statsdir * Specify the directory path for files created by the statistics * facility. This is the same operation as the "statsdir DIR" * configuration command. * -t key * Add a key number to the trusted key list. This option can occur * more than once. * -u user[:group] * Specify a user, and optionally a group, to switch to. * -v variable * -V variable * Add a system variable listed by default. * -x Normally, the time is slewed if the offset is less than the step * threshold, which is 128 ms by default, and stepped if above * the threshold. This option sets the threshold to 600 s, which is * well within the accuracy window to set the clock manually. * Note: since the slew rate of typical Unix kernels is limited * to 0.5 ms/s, each second of adjustment requires an amortization * interval of 2000 s. Thus, an adjustment as much as 600 s * will take almost 14 days to complete. This option can be used * with the -g and -q options. See the tinker command for other options. * Note: The kernel time discipline is disabled with this option. */ /* By doing init in a separate function we decrease stack usage * in main loop. */ static NOINLINE void ntp_init(char **argv) { unsigned opts; llist_t *peers; srandom(getpid()); if (getuid()) bb_error_msg_and_die(bb_msg_you_must_be_root); /* Set some globals */ G.stratum = MAXSTRAT; if (BURSTPOLL != 0) G.poll_exp = BURSTPOLL; /* speeds up initial sync */ G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */ /* Parse options */ peers = NULL; opt_complementary = "dd:p::"; /* d: counter, p: list */ opts = getopt32(argv, "nqNx" /* compat */ "p:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */ "d" /* compat */ "46aAbgL", /* compat, ignored */ &peers, &G.verbose); if (!(opts & (OPT_p|OPT_l))) bb_show_usage(); // if (opts & OPT_x) /* disable stepping, only slew is allowed */ // G.time_was_stepped = 1; while (peers) add_peers(llist_pop(&peers)); if (!(opts & OPT_n)) { bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv); logmode = LOGMODE_NONE; } #if ENABLE_FEATURE_NTPD_SERVER G.listen_fd = -1; if (opts & OPT_l) { G.listen_fd = create_and_bind_dgram_or_die(NULL, 123); socket_want_pktinfo(G.listen_fd); setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY)); } #endif /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */ if (opts & OPT_N) setpriority(PRIO_PROCESS, 0, -15); bb_signals((1 << SIGTERM) | (1 << SIGINT), record_signo); bb_signals((1 << SIGPIPE) | (1 << SIGHUP), SIG_IGN); } int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE; int ntpd_main(int argc UNUSED_PARAM, char **argv) { #undef G struct globals G; struct pollfd *pfd; peer_t **idx2peer; unsigned cnt; memset(&G, 0, sizeof(G)); SET_PTR_TO_GLOBALS(&G); ntp_init(argv); /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */ cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER; idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt); pfd = xzalloc(sizeof(pfd[0]) * cnt); /* Countdown: we never sync before we sent 5 packets to each peer * NB: if some peer is not responding, we may end up sending * fewer packets to it and more to other peers. * NB2: sync usually happens using 5-1=4 packets, since last reply * does not come back instantaneously. */ cnt = G.peer_cnt * 5; while (!bb_got_signal) { llist_t *item; unsigned i, j; int nfds, timeout; double nextaction; /* Nothing between here and poll() blocks for any significant time */ nextaction = G.cur_time + 3600; i = 0; #if ENABLE_FEATURE_NTPD_SERVER if (G.listen_fd != -1) { pfd[0].fd = G.listen_fd; pfd[0].events = POLLIN; i++; } #endif /* Pass over peer list, send requests, time out on receives */ for (item = G.ntp_peers; item != NULL; item = item->link) { peer_t *p = (peer_t *) item->data; if (p->next_action_time <= G.cur_time) { if (p->p_fd == -1) { /* Time to send new req */ if (--cnt == 0) { G.initial_poll_complete = 1; } send_query_to_peer(p); } else { /* Timed out waiting for reply */ close(p->p_fd); p->p_fd = -1; timeout = poll_interval(-2); /* -2: try a bit sooner */ bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us", p->p_dotted, p->reachable_bits, timeout); set_next(p, timeout); } } if (p->next_action_time < nextaction) nextaction = p->next_action_time; if (p->p_fd >= 0) { /* Wait for reply from this peer */ pfd[i].fd = p->p_fd; pfd[i].events = POLLIN; idx2peer[i] = p; i++; } } timeout = nextaction - G.cur_time; if (timeout < 0) timeout = 0; timeout++; /* (nextaction - G.cur_time) rounds down, compensating */ /* Here we may block */ VERB2 bb_error_msg("poll %us, sockets:%u", timeout, i); nfds = poll(pfd, i, timeout * 1000); gettime1900d(); /* sets G.cur_time */ if (nfds <= 0) continue; /* Process any received packets */ j = 0; #if ENABLE_FEATURE_NTPD_SERVER if (G.listen_fd != -1) { if (pfd[0].revents /* & (POLLIN|POLLERR)*/) { nfds--; recv_and_process_client_pkt(/*G.listen_fd*/); gettime1900d(); /* sets G.cur_time */ } j = 1; } #endif for (; nfds != 0 && j < i; j++) { if (pfd[j].revents /* & (POLLIN|POLLERR)*/) { nfds--; recv_and_process_peer_pkt(idx2peer[j]); gettime1900d(); /* sets G.cur_time */ } } } /* while (!bb_got_signal) */ kill_myself_with_sig(bb_got_signal); } /*** openntpd-4.6 uses only adjtime, not adjtimex ***/ /*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/ #if 0 static double direct_freq(double fp_offset) { #ifdef KERNEL_PLL /* * If the kernel is enabled, we need the residual offset to * calculate the frequency correction. */ if (pll_control && kern_enable) { memset(&ntv, 0, sizeof(ntv)); ntp_adjtime(&ntv); #ifdef STA_NANO clock_offset = ntv.offset / 1e9; #else /* STA_NANO */ clock_offset = ntv.offset / 1e6; #endif /* STA_NANO */ drift_comp = FREQTOD(ntv.freq); } #endif /* KERNEL_PLL */ set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp); wander_resid = 0; return drift_comp; } static void set_freq(double freq) /* frequency update */ { char tbuf[80]; drift_comp = freq; #ifdef KERNEL_PLL /* * If the kernel is enabled, update the kernel frequency. */ if (pll_control && kern_enable) { memset(&ntv, 0, sizeof(ntv)); ntv.modes = MOD_FREQUENCY; ntv.freq = DTOFREQ(drift_comp); ntp_adjtime(&ntv); snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6); report_event(EVNT_FSET, NULL, tbuf); } else { snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6); report_event(EVNT_FSET, NULL, tbuf); } #else /* KERNEL_PLL */ snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6); report_event(EVNT_FSET, NULL, tbuf); #endif /* KERNEL_PLL */ } ... ... ... #ifdef KERNEL_PLL /* * This code segment works when clock adjustments are made using * precision time kernel support and the ntp_adjtime() system * call. This support is available in Solaris 2.6 and later, * Digital Unix 4.0 and later, FreeBSD, Linux and specially * modified kernels for HP-UX 9 and Ultrix 4. In the case of the * DECstation 5000/240 and Alpha AXP, additional kernel * modifications provide a true microsecond clock and nanosecond * clock, respectively. * * Important note: The kernel discipline is used only if the * step threshold is less than 0.5 s, as anything higher can * lead to overflow problems. This might occur if some misguided * lad set the step threshold to something ridiculous. */ if (pll_control && kern_enable) { #define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST) /* * We initialize the structure for the ntp_adjtime() * system call. We have to convert everything to * microseconds or nanoseconds first. Do not update the * system variables if the ext_enable flag is set. In * this case, the external clock driver will update the * variables, which will be read later by the local * clock driver. Afterwards, remember the time and * frequency offsets for jitter and stability values and * to update the frequency file. */ memset(&ntv, 0, sizeof(ntv)); if (ext_enable) { ntv.modes = MOD_STATUS; } else { #ifdef STA_NANO ntv.modes = MOD_BITS | MOD_NANO; #else /* STA_NANO */ ntv.modes = MOD_BITS; #endif /* STA_NANO */ if (clock_offset < 0) dtemp = -.5; else dtemp = .5; #ifdef STA_NANO ntv.offset = (int32)(clock_offset * 1e9 + dtemp); ntv.constant = sys_poll; #else /* STA_NANO */ ntv.offset = (int32)(clock_offset * 1e6 + dtemp); ntv.constant = sys_poll - 4; #endif /* STA_NANO */ ntv.esterror = (u_int32)(clock_jitter * 1e6); ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6); ntv.status = STA_PLL; /* * Enable/disable the PPS if requested. */ if (pps_enable) { if (!(pll_status & STA_PPSTIME)) report_event(EVNT_KERN, NULL, "PPS enabled"); ntv.status |= STA_PPSTIME | STA_PPSFREQ; } else { if (pll_status & STA_PPSTIME) report_event(EVNT_KERN, NULL, "PPS disabled"); ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ); } if (sys_leap == LEAP_ADDSECOND) ntv.status |= STA_INS; else if (sys_leap == LEAP_DELSECOND) ntv.status |= STA_DEL; } /* * Pass the stuff to the kernel. If it squeals, turn off * the pps. In any case, fetch the kernel offset, * frequency and jitter. */ if (ntp_adjtime(&ntv) == TIME_ERROR) { if (!(ntv.status & STA_PPSSIGNAL)) report_event(EVNT_KERN, NULL, "PPS no signal"); } pll_status = ntv.status; #ifdef STA_NANO clock_offset = ntv.offset / 1e9; #else /* STA_NANO */ clock_offset = ntv.offset / 1e6; #endif /* STA_NANO */ clock_frequency = FREQTOD(ntv.freq); /* * If the kernel PPS is lit, monitor its performance. */ if (ntv.status & STA_PPSTIME) { #ifdef STA_NANO clock_jitter = ntv.jitter / 1e9; #else /* STA_NANO */ clock_jitter = ntv.jitter / 1e6; #endif /* STA_NANO */ } #if defined(STA_NANO) && NTP_API == 4 /* * If the TAI changes, update the kernel TAI. */ if (loop_tai != sys_tai) { loop_tai = sys_tai; ntv.modes = MOD_TAI; ntv.constant = sys_tai; ntp_adjtime(&ntv); } #endif /* STA_NANO */ } #endif /* KERNEL_PLL */ #endif