/* * Copyright (C) 2017 Denys Vlasenko * * Licensed under GPLv2, see file LICENSE in this source tree. */ //config:config TLS //config: bool #No description makes it a hidden option //config: default n //kbuild:lib-$(CONFIG_TLS) += tls.o //kbuild:lib-$(CONFIG_TLS) += tls_pstm.o //kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o //kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o //kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o //kbuild:lib-$(CONFIG_TLS) += tls_aes.o //kbuild:lib-$(CONFIG_TLS) += tls_aesgcm.o //kbuild:lib-$(CONFIG_TLS) += tls_rsa.o //kbuild:lib-$(CONFIG_TLS) += tls_fe.o #include "tls.h" //TLS 1.2 #define TLS_MAJ 3 #define TLS_MIN 3 //Tested against kernel.org: //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA // ok, recvs SERVER_KEY_EXCHANGE *** matrixssl uses this on my box //#define CIPHER_ID TLS_RSA_WITH_AES_256_CBC_SHA256 // ok, no SERVER_KEY_EXCHANGE //#define CIPHER_ID TLS_DH_anon_WITH_AES_256_CBC_SHA // SSL_ALERT_HANDSHAKE_FAILURE //^^^^^^^^^^^^^^^^^^^^^^^ (tested b/c this one doesn't req server certs... no luck, server refuses it) //#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 // SSL_ALERT_HANDSHAKE_FAILURE //#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 // ok, recvs SERVER_KEY_EXCHANGE //#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 //#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 //#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE //#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 //#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE //#define CIPHER_ID TLS_RSA_WITH_AES_256_GCM_SHA384 // ok, no SERVER_KEY_EXCHANGE //#define CIPHER_ID TLS_RSA_WITH_AES_128_GCM_SHA256 // ok, no SERVER_KEY_EXCHANGE // works against "openssl s_server -cipher NULL" // and against wolfssl-3.9.10-stable/examples/server/server.c: //#define CIPHER_ID1 TLS_RSA_WITH_NULL_SHA256 // for testing (does everything except encrypting) // works against wolfssl-3.9.10-stable/examples/server/server.c // works for kernel.org // does not work for cdn.kernel.org (e.g. downloading an actual tarball, not a web page) // getting alert 40 "handshake failure" at once // with GNU Wget 1.18, they agree on TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC02F) cipher // fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES256-SHA256 // fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES256-GCM-SHA384 // fail: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-SHA256 // ok: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-GCM-SHA256 // ok: openssl s_client -connect cdn.kernel.org:443 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher AES128-SHA // (TLS_RSA_WITH_AES_128_CBC_SHA - in TLS 1.2 it's mandated to be always supported) #define CIPHER_ID1 TLS_RSA_WITH_AES_256_CBC_SHA256 // no SERVER_KEY_EXCHANGE from peer // Works with "wget https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.5.tar.xz" #define CIPHER_ID2 TLS_RSA_WITH_AES_128_CBC_SHA // bug #11456: host is.gd accepts only ECDHE-ECDSA-foo (the simplest which works: ECDHE-ECDSA-AES128-SHA 0xC009) #define CIPHER_ID3 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA // ftp.openbsd.org only supports ECDHE-RSA-AESnnn-GCM-SHAnnn or ECDHE-RSA-CHACHA20-POLY1305 #define CIPHER_ID4 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 #define NUM_CIPHERS 4 #define TLS_DEBUG 0 #define TLS_DEBUG_HASH 0 #define TLS_DEBUG_DER 0 #define TLS_DEBUG_FIXED_SECRETS 0 #if 0 # define dump_raw_out(...) dump_hex(__VA_ARGS__) #else # define dump_raw_out(...) ((void)0) #endif #if 0 # define dump_raw_in(...) dump_hex(__VA_ARGS__) #else # define dump_raw_in(...) ((void)0) #endif #if TLS_DEBUG # define dbg(...) fprintf(stderr, __VA_ARGS__) #else # define dbg(...) ((void)0) #endif #if TLS_DEBUG_DER # define dbg_der(...) fprintf(stderr, __VA_ARGS__) #else # define dbg_der(...) ((void)0) #endif #define RECORD_TYPE_CHANGE_CIPHER_SPEC 20 /* 0x14 */ #define RECORD_TYPE_ALERT 21 /* 0x15 */ #define RECORD_TYPE_HANDSHAKE 22 /* 0x16 */ #define RECORD_TYPE_APPLICATION_DATA 23 /* 0x17 */ #define HANDSHAKE_HELLO_REQUEST 0 /* 0x00 */ #define HANDSHAKE_CLIENT_HELLO 1 /* 0x01 */ #define HANDSHAKE_SERVER_HELLO 2 /* 0x02 */ #define HANDSHAKE_HELLO_VERIFY_REQUEST 3 /* 0x03 */ #define HANDSHAKE_NEW_SESSION_TICKET 4 /* 0x04 */ #define HANDSHAKE_CERTIFICATE 11 /* 0x0b */ #define HANDSHAKE_SERVER_KEY_EXCHANGE 12 /* 0x0c */ #define HANDSHAKE_CERTIFICATE_REQUEST 13 /* 0x0d */ #define HANDSHAKE_SERVER_HELLO_DONE 14 /* 0x0e */ #define HANDSHAKE_CERTIFICATE_VERIFY 15 /* 0x0f */ #define HANDSHAKE_CLIENT_KEY_EXCHANGE 16 /* 0x10 */ #define HANDSHAKE_FINISHED 20 /* 0x14 */ #define TLS_EMPTY_RENEGOTIATION_INFO_SCSV 0x00FF /* not a real cipher id... */ #define SSL_NULL_WITH_NULL_NULL 0x0000 #define SSL_RSA_WITH_NULL_MD5 0x0001 #define SSL_RSA_WITH_NULL_SHA 0x0002 #define SSL_RSA_WITH_RC4_128_MD5 0x0004 #define SSL_RSA_WITH_RC4_128_SHA 0x0005 #define TLS_RSA_WITH_IDEA_CBC_SHA 0x0007 /* 7 */ #define SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x000A /* 10 */ #define SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0016 /* 22 */ #define SSL_DH_anon_WITH_RC4_128_MD5 0x0018 /* 24 */ #define SSL_DH_anon_WITH_3DES_EDE_CBC_SHA 0x001B /* 27 */ #define TLS_RSA_WITH_AES_128_CBC_SHA 0x002F /*SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 */ #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 /* 51 */ #define TLS_DH_anon_WITH_AES_128_CBC_SHA 0x0034 /* 52 */ #define TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 /* 53 */ #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 /* 57 */ #define TLS_DH_anon_WITH_AES_256_CBC_SHA 0x003A /* 58 */ #define TLS_RSA_WITH_NULL_SHA256 0x003B /* 59 */ #define TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C /* 60 */ #define TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D /* 61 */ #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x0067 /* 103 */ #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x006B /* 107 */ #define TLS_PSK_WITH_AES_128_CBC_SHA 0x008C /* 140 */ #define TLS_PSK_WITH_AES_256_CBC_SHA 0x008D /* 141 */ #define TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x0090 /* 144 */ #define TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x0091 /* 145 */ #define TLS_RSA_WITH_SEED_CBC_SHA 0x0096 /* 150 */ #define TLS_PSK_WITH_AES_128_CBC_SHA256 0x00AE /* 174 */ #define TLS_PSK_WITH_AES_256_CBC_SHA384 0x00AF /* 175 */ #define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0xC004 /* 49156 */ #define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0xC005 /* 49157 */ #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 /*TLSv1 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1 */ #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A /*TLSv1 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1 */ #define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0xC00E /* 49166 */ #define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 0xC00F /* 49167 */ #define TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0xC012 /* 49170 */ #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 /*TLSv1 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1 */ #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 /*TLSv1 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1 */ #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256 */ #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384 */ #define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 0xC025 /* 49189 */ #define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 0xC026 /* 49190 */ #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256 */ #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0xC028 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384 */ #define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 0xC029 /* 49193 */ #define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 0xC02A /* 49194 */ /* RFC 5288 "AES Galois Counter Mode (GCM) Cipher Suites for TLS" */ #define TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C /*TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD */ #define TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D /*TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD */ #define TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0xC02D /* 49197 */ #define TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 0xC02E /* 49198 */ #define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F /*TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD */ #define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD */ #define TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 0xC031 /* 49201 */ #define TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 0xC032 /* 49202 */ /* From http://wiki.mozilla.org/Security/Server_Side_TLS */ /* and 'openssl ciphers -V -stdname' */ #define TLS_RSA_WITH_ARIA_128_GCM_SHA256 0xC050 /*TLSv1.2 Kx=RSA Au=RSA Enc=ARIAGCM(128) Mac=AEAD */ #define TLS_RSA_WITH_ARIA_256_GCM_SHA384 0xC051 /*TLSv1.2 Kx=RSA Au=RSA Enc=ARIAGCM(256) Mac=AEAD */ #define TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 0xC052 /*TLSv1.2 Kx=DH Au=RSA Enc=ARIAGCM(128) Mac=AEAD */ #define TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 0xC053 /*TLSv1.2 Kx=DH Au=RSA Enc=ARIAGCM(256) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 0xC05C /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=ARIAGCM(128) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 0xC05D /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=ARIAGCM(256) Mac=AEAD */ #define TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 0xC060 /*TLSv1.2 Kx=ECDH Au=RSA Enc=ARIAGCM(128) Mac=AEAD */ #define TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 0xC061 /*TLSv1.2 Kx=ECDH Au=RSA Enc=ARIAGCM(256) Mac=AEAD */ #define TLS_RSA_WITH_AES_128_CCM 0xC09C /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM(128) Mac=AEAD */ #define TLS_RSA_WITH_AES_256_CCM 0xC09D /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM(256) Mac=AEAD */ #define TLS_DHE_RSA_WITH_AES_128_CCM 0xC09E /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM(128) Mac=AEAD */ #define TLS_DHE_RSA_WITH_AES_256_CCM 0xC09F /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM(256) Mac=AEAD */ #define TLS_RSA_WITH_AES_128_CCM_8 0xC0A0 /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM8(128) Mac=AEAD */ #define TLS_RSA_WITH_AES_256_CCM_8 0xC0A1 /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM8(256) Mac=AEAD */ #define TLS_DHE_RSA_WITH_AES_128_CCM_8 0xC0A2 /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM8(128) Mac=AEAD */ #define TLS_DHE_RSA_WITH_AES_256_CCM_8 0xC0A3 /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM8(256) Mac=AEAD */ #define TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA8 /*TLSv1.2 Kx=ECDH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA9 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */ #define TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCAA /*TLSv1.2 Kx=DH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_AES_128_CCM 0xC0AC /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(128) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_AES_256_CCM 0xC0AD /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(256) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 0xC0AE /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM8(128) Mac=AEAD */ #define TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 0xC0AF /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM8(256) Mac=AEAD */ #define TLS_AES_128_GCM_SHA256 0x1301 /*TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=AEAD */ #define TLS_AES_256_GCM_SHA384 0x1302 /*TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=AEAD */ #define TLS_CHACHA20_POLY1305_SHA256 0x1303 /*TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD */ #define TLS_AES_128_CCM_SHA256 0x1304 /*TLSv1.3 Kx=any Au=any Enc=AESCCM(128) Mac=AEAD */ /* Might go to libbb.h */ #define TLS_MAX_CRYPTBLOCK_SIZE 16 #define TLS_MAX_OUTBUF (1 << 14) enum { SHA_INSIZE = 64, SHA1_OUTSIZE = 20, SHA256_OUTSIZE = 32, AES128_KEYSIZE = 16, AES256_KEYSIZE = 32, RSA_PREMASTER_SIZE = 48, RECHDR_LEN = 5, /* 8 = 3+5. 3 extra bytes result in record data being 32-bit aligned */ OUTBUF_PFX = 8 + AES_BLOCK_SIZE, /* header + IV */ OUTBUF_SFX = TLS_MAX_MAC_SIZE + TLS_MAX_CRYPTBLOCK_SIZE, /* MAC + padding */ // RFC 5246 // | 6.2.1. Fragmentation // | The record layer fragments information blocks into TLSPlaintext // | records carrying data in chunks of 2^14 bytes or less. Client // | message boundaries are not preserved in the record layer (i.e., // | multiple client messages of the same ContentType MAY be coalesced // | into a single TLSPlaintext record, or a single message MAY be // | fragmented across several records) // |... // | length // | The length (in bytes) of the following TLSPlaintext.fragment. // | The length MUST NOT exceed 2^14. // |... // | 6.2.2. Record Compression and Decompression // |... // | Compression must be lossless and may not increase the content length // | by more than 1024 bytes. If the decompression function encounters a // | TLSCompressed.fragment that would decompress to a length in excess of // | 2^14 bytes, it MUST report a fatal decompression failure error. // |... // | length // | The length (in bytes) of the following TLSCompressed.fragment. // | The length MUST NOT exceed 2^14 + 1024. // |... // | 6.2.3. Record Payload Protection // | The encryption and MAC functions translate a TLSCompressed // | structure into a TLSCiphertext. The decryption functions reverse // | the process. The MAC of the record also includes a sequence // | number so that missing, extra, or repeated messages are // | detectable. // |... // | length // | The length (in bytes) of the following TLSCiphertext.fragment. // | The length MUST NOT exceed 2^14 + 2048. MAX_INBUF = RECHDR_LEN + (1 << 14) + 2048, }; struct record_hdr { uint8_t type; uint8_t proto_maj, proto_min; uint8_t len16_hi, len16_lo; }; enum { NEED_EC_KEY = 1 << 0, GOT_CERT_RSA_KEY_ALG = 1 << 1, GOT_CERT_ECDSA_KEY_ALG = 1 << 2, GOT_EC_KEY = 1 << 3, ENCRYPTION_AESGCM = 1 << 4, }; struct tls_handshake_data { /* In bbox, md5/sha1/sha256 ctx's are the same structure */ md5sha_ctx_t handshake_hash_ctx; uint8_t client_and_server_rand32[2 * 32]; uint8_t master_secret[48]; //TODO: store just the DER key here, parse/use/delete it when sending client key //this way it will stay key type agnostic here. psRsaKey_t server_rsa_pub_key; uint8_t ecc_pub_key32[32]; /* HANDSHAKE HASH: */ //unsigned saved_client_hello_size; //uint8_t saved_client_hello[1]; }; static unsigned get24be(const uint8_t *p) { return 0x100*(0x100*p[0] + p[1]) + p[2]; } #if TLS_DEBUG static void dump_hex(const char *fmt, const void *vp, int len) { char hexbuf[32 * 1024 + 4]; const uint8_t *p = vp; bin2hex(hexbuf, (void*)p, len)[0] = '\0'; dbg(fmt, hexbuf); } static void dump_tls_record(const void *vp, int len) { const uint8_t *p = vp; while (len > 0) { unsigned xhdr_len; if (len < RECHDR_LEN) { dump_hex("< |%s|\n", p, len); return; } xhdr_len = 0x100*p[3] + p[4]; dbg("< hdr_type:%u ver:%u.%u len:%u", p[0], p[1], p[2], xhdr_len); p += RECHDR_LEN; len -= RECHDR_LEN; if (len >= 4 && p[-RECHDR_LEN] == RECORD_TYPE_HANDSHAKE) { unsigned len24 = get24be(p + 1); dbg(" type:%u len24:%u", p[0], len24); } if (xhdr_len > len) xhdr_len = len; dump_hex(" |%s|\n", p, xhdr_len); p += xhdr_len; len -= xhdr_len; } } #else # define dump_hex(...) ((void)0) # define dump_tls_record(...) ((void)0) #endif void FAST_FUNC tls_get_random(void *buf, unsigned len) { if (len != open_read_close("/dev/urandom", buf, len)) xfunc_die(); } static void xorbuf3(void *dst, const void *src1, const void *src2, unsigned count) { uint8_t *d = dst; const uint8_t *s1 = src1; const uint8_t* s2 = src2; while (count--) *d++ = *s1++ ^ *s2++; } void FAST_FUNC xorbuf(void *dst, const void *src, unsigned count) { xorbuf3(dst, dst, src, count); } void FAST_FUNC xorbuf_aligned_AES_BLOCK_SIZE(void *dst, const void *src) { unsigned long *d = dst; const unsigned long *s = src; d[0] ^= s[0]; #if ULONG_MAX <= 0xffffffffffffffff d[1] ^= s[1]; #if ULONG_MAX == 0xffffffff d[2] ^= s[2]; d[3] ^= s[3]; #endif #endif } /* Nondestructively see the current hash value */ static unsigned sha_peek(md5sha_ctx_t *ctx, void *buffer) { md5sha_ctx_t ctx_copy = *ctx; /* struct copy */ return sha_end(&ctx_copy, buffer); } static ALWAYS_INLINE unsigned get_handshake_hash(tls_state_t *tls, void *buffer) { return sha_peek(&tls->hsd->handshake_hash_ctx, buffer); } #if !TLS_DEBUG_HASH # define hash_handshake(tls, fmt, buffer, len) \ hash_handshake(tls, buffer, len) #endif static void hash_handshake(tls_state_t *tls, const char *fmt, const void *buffer, unsigned len) { md5sha_hash(&tls->hsd->handshake_hash_ctx, buffer, len); #if TLS_DEBUG_HASH { uint8_t h[TLS_MAX_MAC_SIZE]; dump_hex(fmt, buffer, len); dbg(" (%u bytes) ", (int)len); len = sha_peek(&tls->hsd->handshake_hash_ctx, h); if (len == SHA1_OUTSIZE) dump_hex("sha1:%s\n", h, len); else if (len == SHA256_OUTSIZE) dump_hex("sha256:%s\n", h, len); else dump_hex("sha???:%s\n", h, len); } #endif } // RFC 2104 // HMAC(key, text) based on a hash H (say, sha256) is: // ipad = [0x36 x INSIZE] // opad = [0x5c x INSIZE] // HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text)) // // H(key XOR opad) and H(key XOR ipad) can be precomputed // if we often need HMAC hmac with the same key. // // text is often given in disjoint pieces. typedef struct hmac_precomputed { md5sha_ctx_t hashed_key_xor_ipad; md5sha_ctx_t hashed_key_xor_opad; } hmac_precomputed_t; static unsigned hmac_sha_precomputed_v( hmac_precomputed_t *pre, uint8_t *out, va_list va) { uint8_t *text; unsigned len; /* pre->hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */ /* pre->hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */ /* calculate out = H((key XOR ipad) + text) */ while ((text = va_arg(va, uint8_t*)) != NULL) { unsigned text_size = va_arg(va, unsigned); md5sha_hash(&pre->hashed_key_xor_ipad, text, text_size); } len = sha_end(&pre->hashed_key_xor_ipad, out); /* out = H((key XOR opad) + out) */ md5sha_hash(&pre->hashed_key_xor_opad, out, len); return sha_end(&pre->hashed_key_xor_opad, out); } typedef void md5sha_begin_func(md5sha_ctx_t *ctx) FAST_FUNC; static void hmac_begin(hmac_precomputed_t *pre, uint8_t *key, unsigned key_size, md5sha_begin_func *begin) { uint8_t key_xor_ipad[SHA_INSIZE]; uint8_t key_xor_opad[SHA_INSIZE]; uint8_t tempkey[SHA1_OUTSIZE < SHA256_OUTSIZE ? SHA256_OUTSIZE : SHA1_OUTSIZE]; unsigned i; // "The authentication key can be of any length up to INSIZE, the // block length of the hash function. Applications that use keys longer // than INSIZE bytes will first hash the key using H and then use the // resultant OUTSIZE byte string as the actual key to HMAC." if (key_size > SHA_INSIZE) { md5sha_ctx_t ctx; begin(&ctx); md5sha_hash(&ctx, key, key_size); key_size = sha_end(&ctx, tempkey); } for (i = 0; i < key_size; i++) { key_xor_ipad[i] = key[i] ^ 0x36; key_xor_opad[i] = key[i] ^ 0x5c; } for (; i < SHA_INSIZE; i++) { key_xor_ipad[i] = 0x36; key_xor_opad[i] = 0x5c; } begin(&pre->hashed_key_xor_ipad); begin(&pre->hashed_key_xor_opad); md5sha_hash(&pre->hashed_key_xor_ipad, key_xor_ipad, SHA_INSIZE); md5sha_hash(&pre->hashed_key_xor_opad, key_xor_opad, SHA_INSIZE); } static unsigned hmac(tls_state_t *tls, uint8_t *out, uint8_t *key, unsigned key_size, ...) { hmac_precomputed_t pre; va_list va; unsigned len; va_start(va, key_size); hmac_begin(&pre, key, key_size, (tls->MAC_size == SHA256_OUTSIZE) ? sha256_begin : sha1_begin ); len = hmac_sha_precomputed_v(&pre, out, va); va_end(va); return len; } static unsigned hmac_sha256(/*tls_state_t *tls,*/ uint8_t *out, uint8_t *key, unsigned key_size, ...) { hmac_precomputed_t pre; va_list va; unsigned len; va_start(va, key_size); hmac_begin(&pre, key, key_size, sha256_begin); len = hmac_sha_precomputed_v(&pre, out, va); va_end(va); return len; } // RFC 5246: // 5. HMAC and the Pseudorandom Function //... // In this section, we define one PRF, based on HMAC. This PRF with the // SHA-256 hash function is used for all cipher suites defined in this // document and in TLS documents published prior to this document when // TLS 1.2 is negotiated. // ^^^^^^^^^^^^^ IMPORTANT! // PRF uses sha256 regardless of cipher (at least for all ciphers // defined by RFC5246). It's not sha1 for AES_128_CBC_SHA! //... // P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) + // HMAC_hash(secret, A(2) + seed) + // HMAC_hash(secret, A(3) + seed) + ... // where + indicates concatenation. // A() is defined as: // A(0) = seed // A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed) // A(i) = HMAC_hash(secret, A(i-1)) // P_hash can be iterated as many times as necessary to produce the // required quantity of data. For example, if P_SHA256 is being used to // create 80 bytes of data, it will have to be iterated three times // (through A(3)), creating 96 bytes of output data; the last 16 bytes // of the final iteration will then be discarded, leaving 80 bytes of // output data. // // TLS's PRF is created by applying P_hash to the secret as: // // PRF(secret, label, seed) = P_(secret, label + seed) // // The label is an ASCII string. static void prf_hmac_sha256(/*tls_state_t *tls,*/ uint8_t *outbuf, unsigned outbuf_size, uint8_t *secret, unsigned secret_size, const char *label, uint8_t *seed, unsigned seed_size) { uint8_t a[TLS_MAX_MAC_SIZE]; uint8_t *out_p = outbuf; unsigned label_size = strlen(label); unsigned MAC_size = SHA256_OUTSIZE; /* In P_hash() calculation, "seed" is "label + seed": */ #define SEED label, label_size, seed, seed_size #define SECRET secret, secret_size #define A a, MAC_size /* A(1) = HMAC_hash(secret, seed) */ hmac_sha256(/*tls,*/ a, SECRET, SEED, NULL); //TODO: convert hmac to precomputed for (;;) { /* HMAC_hash(secret, A(1) + seed) */ if (outbuf_size <= MAC_size) { /* Last, possibly incomplete, block */ /* (use a[] as temp buffer) */ hmac_sha256(/*tls,*/ a, SECRET, A, SEED, NULL); memcpy(out_p, a, outbuf_size); return; } /* Not last block. Store directly to result buffer */ hmac_sha256(/*tls,*/ out_p, SECRET, A, SEED, NULL); out_p += MAC_size; outbuf_size -= MAC_size; /* A(2) = HMAC_hash(secret, A(1)) */ hmac_sha256(/*tls,*/ a, SECRET, A, NULL); } #undef A #undef SECRET #undef SEED } static void bad_record_die(tls_state_t *tls, const char *expected, int len) { bb_error_msg("got bad TLS record (len:%d) while expecting %s", len, expected); if (len > 0) { uint8_t *p = tls->inbuf; if (len > 99) len = 99; /* don't flood, a few lines should be enough */ do { fprintf(stderr, " %02x", *p++); len--; } while (len != 0); fputc('\n', stderr); } xfunc_die(); } static void tls_error_die(tls_state_t *tls, int line) { dump_tls_record(tls->inbuf, tls->ofs_to_buffered + tls->buffered_size); bb_error_msg_and_die("tls error at line %d cipher:%04x", line, tls->cipher_id); } #define tls_error_die(tls) tls_error_die(tls, __LINE__) #if 0 //UNUSED static void tls_free_inbuf(tls_state_t *tls) { if (tls->buffered_size == 0) { free(tls->inbuf); tls->inbuf_size = 0; tls->inbuf = NULL; } } #endif static void tls_free_outbuf(tls_state_t *tls) { free(tls->outbuf); tls->outbuf_size = 0; tls->outbuf = NULL; } static void *tls_get_outbuf(tls_state_t *tls, int len) { if (len > TLS_MAX_OUTBUF) xfunc_die(); len += OUTBUF_PFX + OUTBUF_SFX; if (tls->outbuf_size < len) { tls->outbuf_size = len; tls->outbuf = xrealloc(tls->outbuf, len); } return tls->outbuf + OUTBUF_PFX; } static void *tls_get_zeroed_outbuf(tls_state_t *tls, int len) { void *record = tls_get_outbuf(tls, len); memset(record, 0, len); return record; } static void xwrite_encrypted_and_hmac_signed(tls_state_t *tls, unsigned size, unsigned type) { uint8_t *buf = tls->outbuf + OUTBUF_PFX; struct record_hdr *xhdr; uint8_t padding_length; xhdr = (void*)(buf - RECHDR_LEN); if (CIPHER_ID1 != TLS_RSA_WITH_NULL_SHA256 /* if "no encryption" can't be selected */ || tls->cipher_id != TLS_RSA_WITH_NULL_SHA256 /* or if it wasn't selected */ ) { xhdr = (void*)(buf - RECHDR_LEN - AES_BLOCK_SIZE); /* place for IV */ } xhdr->type = type; xhdr->proto_maj = TLS_MAJ; xhdr->proto_min = TLS_MIN; /* fake unencrypted record len for MAC calculation */ xhdr->len16_hi = size >> 8; xhdr->len16_lo = size & 0xff; /* Calculate MAC signature */ hmac(tls, buf + size, /* result */ tls->client_write_MAC_key, tls->MAC_size, &tls->write_seq64_be, sizeof(tls->write_seq64_be), xhdr, RECHDR_LEN, buf, size, NULL ); tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be)); size += tls->MAC_size; // RFC 5246 // 6.2.3.1. Null or Standard Stream Cipher // // Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6) // convert TLSCompressed.fragment structures to and from stream // TLSCiphertext.fragment structures. // // stream-ciphered struct { // opaque content[TLSCompressed.length]; // opaque MAC[SecurityParameters.mac_length]; // } GenericStreamCipher; // // The MAC is generated as: // MAC(MAC_write_key, seq_num + // TLSCompressed.type + // TLSCompressed.version + // TLSCompressed.length + // TLSCompressed.fragment); // where "+" denotes concatenation. // seq_num // The sequence number for this record. // MAC // The MAC algorithm specified by SecurityParameters.mac_algorithm. // // Note that the MAC is computed before encryption. The stream cipher // encrypts the entire block, including the MAC. //... // Appendix C. Cipher Suite Definitions //... // MAC Algorithm mac_length mac_key_length // -------- ----------- ---------- -------------- // SHA HMAC-SHA1 20 20 // SHA256 HMAC-SHA256 32 32 if (CIPHER_ID1 == TLS_RSA_WITH_NULL_SHA256 && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256 ) { /* No encryption, only signing */ xhdr->len16_hi = size >> 8; xhdr->len16_lo = size & 0xff; dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size); xwrite(tls->ofd, xhdr, RECHDR_LEN + size); dbg("wrote %u bytes (NULL crypt, SHA256 hash)\n", size); return; } // 6.2.3.2. CBC Block Cipher // For block ciphers (such as 3DES or AES), the encryption and MAC // functions convert TLSCompressed.fragment structures to and from block // TLSCiphertext.fragment structures. // struct { // opaque IV[SecurityParameters.record_iv_length]; // block-ciphered struct { // opaque content[TLSCompressed.length]; // opaque MAC[SecurityParameters.mac_length]; // uint8 padding[GenericBlockCipher.padding_length]; // uint8 padding_length; // }; // } GenericBlockCipher; //... // IV // The Initialization Vector (IV) SHOULD be chosen at random, and // MUST be unpredictable. Note that in versions of TLS prior to 1.1, // there was no IV field (...). For block ciphers, the IV length is // of length SecurityParameters.record_iv_length, which is equal to the // SecurityParameters.block_size. // padding // Padding that is added to force the length of the plaintext to be // an integral multiple of the block cipher's block length. // padding_length // The padding length MUST be such that the total size of the // GenericBlockCipher structure is a multiple of the cipher's block // length. Legal values range from zero to 255, inclusive. //... // Appendix C. Cipher Suite Definitions //... // Key IV Block // Cipher Type Material Size Size // ------------ ------ -------- ---- ----- // AES_128_CBC Block 16 16 16 // AES_256_CBC Block 32 16 16 tls_get_random(buf - AES_BLOCK_SIZE, AES_BLOCK_SIZE); /* IV */ dbg("before crypt: 5 hdr + %u data + %u hash bytes\n", size - tls->MAC_size, tls->MAC_size); /* Fill IV and padding in outbuf */ // RFC is talking nonsense: // "Padding that is added to force the length of the plaintext to be // an integral multiple of the block cipher's block length." // WRONG. _padding+padding_length_, not just _padding_, // pads the data. // IOW: padding_length is the last byte of padding[] array, // contrary to what RFC depicts. // // What actually happens is that there is always padding. // If you need one byte to reach BLOCKSIZE, this byte is 0x00. // If you need two bytes, they are both 0x01. // If you need three, they are 0x02,0x02,0x02. And so on. // If you need no bytes to reach BLOCKSIZE, you have to pad a full // BLOCKSIZE with bytes of value (BLOCKSIZE-1). // It's ok to have more than minimum padding, but we do minimum. padding_length = (~size) & (AES_BLOCK_SIZE - 1); do { buf[size++] = padding_length; /* padding */ } while ((size & (AES_BLOCK_SIZE - 1)) != 0); /* Encrypt content+MAC+padding in place */ aes_cbc_encrypt( &tls->aes_decrypt, /* selects 128/256 */ buf - AES_BLOCK_SIZE, /* IV */ buf, size, /* plaintext */ buf /* ciphertext */ ); /* Write out */ dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n", AES_BLOCK_SIZE, size, padding_length); size += AES_BLOCK_SIZE; /* + IV */ xhdr->len16_hi = size >> 8; xhdr->len16_lo = size & 0xff; dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size); xwrite(tls->ofd, xhdr, RECHDR_LEN + size); dbg("wrote %u bytes\n", (int)RECHDR_LEN + size); } /* Example how GCM encryption combines nonce, aad, input and generates * "header | exp_nonce | encrypted output | tag": * nonce:0d 6a 26 31 00 00 00 00 00 00 00 01 (implicit 4 bytes (derived from master secret), then explicit 8 bytes) * aad: 00 00 00 00 00 00 00 01 17 03 03 00 1c * in: 47 45 54 20 2f 69 6e 64 65 78 2e 68 74 6d 6c 20 48 54 54 50 2f 31 2e 30 0d 0a 0d 0a "GET /index.html HTTP/1.0\r\n\r\n" (0x1c bytes) * out: f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be * tag: c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33 * sent: 17 03 03 00 34|00 00 00 00 00 00 00 01|f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be|c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33 * .............................................^^ buf points here */ static void xwrite_encrypted_aesgcm(tls_state_t *tls, unsigned size, unsigned type) { #define COUNTER(v) (*(uint32_t*)(v + 12)) uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */ uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */ uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16] uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16] uint8_t *buf; struct record_hdr *xhdr; unsigned remaining; unsigned cnt; uint64_t t64; buf = tls->outbuf + OUTBUF_PFX; /* see above for the byte it points to */ dump_hex("xwrite_encrypted_aesgcm plaintext:%s\n", buf, size); xhdr = (void*)(buf - 8 - RECHDR_LEN); xhdr->type = type; /* do it here so that "type" param no longer used */ aad[8] = type; aad[9] = TLS_MAJ; aad[10] = TLS_MIN; aad[11] = size >> 8; /* set aad[12], and clear aad[13..15] */ COUNTER(aad) = SWAP_LE32(size & 0xff); memcpy(nonce, tls->client_write_IV, 4); t64 = tls->write_seq64_be; move_to_unaligned64(nonce + 4, t64); move_to_unaligned64(aad, t64); move_to_unaligned64(buf - 8, t64); /* seq64 is not used later in this func, can increment here */ tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(t64)); cnt = 1; remaining = size; while (remaining != 0) { unsigned n; cnt++; COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */ aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch); n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining; xorbuf(buf, scratch, n); buf += n; remaining -= n; } aesgcm_GHASH(tls->H, aad, /*sizeof(aad),*/ tls->outbuf + OUTBUF_PFX, size, authtag /*, sizeof(authtag)*/); COUNTER(nonce) = htonl(1); aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch); xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch); memcpy(buf, authtag, sizeof(authtag)); #undef COUNTER /* Write out */ xhdr = (void*)(tls->outbuf + OUTBUF_PFX - 8 - RECHDR_LEN); size += 8 + sizeof(authtag); /*xhdr->type = type; - already is */ xhdr->proto_maj = TLS_MAJ; xhdr->proto_min = TLS_MIN; xhdr->len16_hi = size >> 8; xhdr->len16_lo = size & 0xff; size += RECHDR_LEN; dump_raw_out(">> %s\n", xhdr, size); xwrite(tls->ofd, xhdr, size); dbg("wrote %u bytes\n", size); } static void xwrite_encrypted(tls_state_t *tls, unsigned size, unsigned type) { if (!(tls->flags & ENCRYPTION_AESGCM)) { xwrite_encrypted_and_hmac_signed(tls, size, type); return; } xwrite_encrypted_aesgcm(tls, size, type); } static void xwrite_handshake_record(tls_state_t *tls, unsigned size) { uint8_t *buf = tls->outbuf + OUTBUF_PFX; struct record_hdr *xhdr = (void*)(buf - RECHDR_LEN); xhdr->type = RECORD_TYPE_HANDSHAKE; xhdr->proto_maj = TLS_MAJ; xhdr->proto_min = TLS_MIN; xhdr->len16_hi = size >> 8; xhdr->len16_lo = size & 0xff; dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size); xwrite(tls->ofd, xhdr, RECHDR_LEN + size); dbg("wrote %u bytes\n", (int)RECHDR_LEN + size); } static void xwrite_and_update_handshake_hash(tls_state_t *tls, unsigned size) { if (!tls->encrypt_on_write) { uint8_t *buf; xwrite_handshake_record(tls, size); /* Handshake hash does not include record headers */ buf = tls->outbuf + OUTBUF_PFX; hash_handshake(tls, ">> hash:%s", buf, size); return; } xwrite_encrypted(tls, size, RECORD_TYPE_HANDSHAKE); } static int tls_has_buffered_record(tls_state_t *tls) { int buffered = tls->buffered_size; struct record_hdr *xhdr; int rec_size; if (buffered < RECHDR_LEN) return 0; xhdr = (void*)(tls->inbuf + tls->ofs_to_buffered); rec_size = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo); if (buffered < rec_size) return 0; return rec_size; } static const char *alert_text(int code) { switch (code) { case 20: return "bad MAC"; case 50: return "decode error"; case 51: return "decrypt error"; case 40: return "handshake failure"; case 112: return "unrecognized name"; } return itoa(code); } static void tls_aesgcm_decrypt(tls_state_t *tls, uint8_t *buf, int size) { #define COUNTER(v) (*(uint32_t*)(v + 12)) //uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */ uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */ uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16] //uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16] unsigned remaining; unsigned cnt; //memcpy(aad, buf, 8); //aad[8] = type; //aad[9] = TLS_MAJ; //aad[10] = TLS_MIN; //aad[11] = size >> 8; ///* set aad[12], and clear aad[13..15] */ //COUNTER(aad) = SWAP_LE32(size & 0xff); memcpy(nonce, tls->server_write_IV, 4); memcpy(nonce + 4, buf, 8); cnt = 1; remaining = size; while (remaining != 0) { unsigned n; cnt++; COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */ aes_encrypt_one_block(&tls->aes_decrypt, nonce, scratch); n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining; xorbuf3(buf, scratch, buf + 8, n); buf += n; remaining -= n; } //aesgcm_GHASH(tls->H, aad, tls->inbuf + RECHDR_LEN, size, authtag); //COUNTER(nonce) = htonl(1); //aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch); //xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch); //memcmp(buf, authtag, sizeof(authtag)) || DIE("HASH DOES NOT MATCH!"); #undef COUNTER } static int tls_xread_record(tls_state_t *tls, const char *expected) { struct record_hdr *xhdr; int sz; int total; int target; again: dbg("ofs_to_buffered:%u buffered_size:%u\n", tls->ofs_to_buffered, tls->buffered_size); total = tls->buffered_size; if (total != 0) { memmove(tls->inbuf, tls->inbuf + tls->ofs_to_buffered, total); //dbg("<< remaining at %d [%d] ", tls->ofs_to_buffered, total); //dump_raw_in("<< %s\n", tls->inbuf, total); } errno = 0; target = MAX_INBUF; for (;;) { int rem; if (total >= RECHDR_LEN && target == MAX_INBUF) { xhdr = (void*)tls->inbuf; target = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo); if (target > MAX_INBUF /* malformed input (too long) */ || xhdr->proto_maj != TLS_MAJ || xhdr->proto_min != TLS_MIN ) { sz = total < target ? total : target; bad_record_die(tls, expected, sz); } dbg("xhdr type:%d ver:%d.%d len:%d\n", xhdr->type, xhdr->proto_maj, xhdr->proto_min, 0x100 * xhdr->len16_hi + xhdr->len16_lo ); } /* if total >= target, we have a full packet (and possibly more)... */ if (total - target >= 0) break; /* input buffer is grown only as needed */ rem = tls->inbuf_size - total; if (rem == 0) { tls->inbuf_size += MAX_INBUF / 8; if (tls->inbuf_size > MAX_INBUF) tls->inbuf_size = MAX_INBUF; dbg("inbuf_size:%d\n", tls->inbuf_size); rem = tls->inbuf_size - total; tls->inbuf = xrealloc(tls->inbuf, tls->inbuf_size); } sz = safe_read(tls->ifd, tls->inbuf + total, rem); if (sz <= 0) { if (sz == 0 && total == 0) { /* "Abrupt" EOF, no TLS shutdown (seen from kernel.org) */ dbg("EOF (without TLS shutdown) from peer\n"); tls->buffered_size = 0; goto end; } bb_perror_msg_and_die("short read, have only %d", total); } dump_raw_in("<< %s\n", tls->inbuf + total, sz); total += sz; } tls->buffered_size = total - target; tls->ofs_to_buffered = target; //dbg("<< stashing at %d [%d] ", tls->ofs_to_buffered, tls->buffered_size); //dump_hex("<< %s\n", tls->inbuf + tls->ofs_to_buffered, tls->buffered_size); sz = target - RECHDR_LEN; /* Needs to be decrypted? */ if (tls->min_encrypted_len_on_read != 0) { if (sz < (int)tls->min_encrypted_len_on_read) bb_error_msg_and_die("bad encrypted len:%u", sz); if (tls->flags & ENCRYPTION_AESGCM) { /* AESGCM */ uint8_t *p = tls->inbuf + RECHDR_LEN; sz -= 8 + AES_BLOCK_SIZE; /* we will overwrite nonce, drop hash */ tls_aesgcm_decrypt(tls, p, sz); dbg("encrypted size:%u\n", sz); } else if (tls->min_encrypted_len_on_read > tls->MAC_size) { /* AES+SHA */ uint8_t *p = tls->inbuf + RECHDR_LEN; int padding_len; if (sz & (AES_BLOCK_SIZE-1)) bb_error_msg_and_die("bad encrypted len:%u", sz); /* Decrypt content+MAC+padding, moving it over IV in the process */ sz -= AES_BLOCK_SIZE; /* we will overwrite IV now */ aes_cbc_decrypt( &tls->aes_decrypt, /* selects 128/256 */ p, /* IV */ p + AES_BLOCK_SIZE, sz, /* ciphertext */ p /* plaintext */ ); padding_len = p[sz - 1]; dbg("encrypted size:%u type:0x%02x padding_length:0x%02x\n", sz, p[0], padding_len); padding_len++; sz -= tls->MAC_size + padding_len; /* drop MAC and padding */ } else { /* if nonzero, then it's TLS_RSA_WITH_NULL_SHA256: drop MAC */ /* else: no encryption yet on input, subtract zero = NOP */ sz -= tls->min_encrypted_len_on_read; } } if (sz < 0) bb_error_msg_and_die("encrypted data too short"); //dump_hex("<< %s\n", tls->inbuf, RECHDR_LEN + sz); xhdr = (void*)tls->inbuf; if (xhdr->type == RECORD_TYPE_ALERT && sz >= 2) { uint8_t *p = tls->inbuf + RECHDR_LEN; dbg("ALERT size:%d level:%d description:%d\n", sz, p[0], p[1]); if (p[0] == 2) { /* fatal */ bb_error_msg_and_die("TLS %s from peer (alert code %d): %s", "error", p[1], alert_text(p[1]) ); } if (p[0] == 1) { /* warning */ if (p[1] == 0) { /* "close_notify" warning: it's EOF */ dbg("EOF (TLS encoded) from peer\n"); sz = 0; goto end; } //This possibly needs to be cached and shown only if //a fatal alert follows // bb_error_msg("TLS %s from peer (alert code %d): %s", // "warning", // p[1], alert_text(p[1]) // ); /* discard it, get next record */ goto again; } /* p[0] not 1 or 2: not defined in protocol */ sz = 0; goto end; } /* RFC 5246 is not saying it explicitly, but sha256 hash * in our FINISHED record must include data of incoming packets too! */ if (tls->inbuf[0] == RECORD_TYPE_HANDSHAKE /* HANDSHAKE HASH: */ // && do_we_know_which_hash_to_use /* server_hello() might not know it in the future! */ ) { hash_handshake(tls, "<< hash:%s", tls->inbuf + RECHDR_LEN, sz); } end: dbg("got block len:%u\n", sz); return sz; } static void binary_to_pstm(pstm_int *pstm_n, uint8_t *bin_ptr, unsigned len) { pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len); pstm_read_unsigned_bin(pstm_n, bin_ptr, len); //return bin_ptr + len; } /* * DER parsing routines */ static unsigned get_der_len(uint8_t **bodyp, uint8_t *der, uint8_t *end) { unsigned len, len1; if (end - der < 2) xfunc_die(); // if ((der[0] & 0x1f) == 0x1f) /* not single-byte item code? */ // xfunc_die(); len = der[1]; /* maybe it's short len */ if (len >= 0x80) { /* no, it's long */ if (len == 0x80 || end - der < (int)(len - 0x7e)) { /* 0x80 is "0 bytes of len", invalid DER: must use short len if can */ /* need 3 or 4 bytes for 81, 82 */ xfunc_die(); } len1 = der[2]; /* if (len == 0x81) it's "ii 81 xx", fetch xx */ if (len > 0x82) { /* >0x82 is "3+ bytes of len", should not happen realistically */ xfunc_die(); } if (len == 0x82) { /* it's "ii 82 xx yy" */ len1 = 0x100*len1 + der[3]; der += 1; /* skip [yy] */ } der += 1; /* skip [xx] */ len = len1; // if (len < 0x80) // xfunc_die(); /* invalid DER: must use short len if can */ } der += 2; /* skip [code]+[1byte] */ if (end - der < (int)len) xfunc_die(); *bodyp = der; return len; } static uint8_t *enter_der_item(uint8_t *der, uint8_t **endp) { uint8_t *new_der; unsigned len = get_der_len(&new_der, der, *endp); dbg_der("entered der @%p:0x%02x len:%u inner_byte @%p:0x%02x\n", der, der[0], len, new_der, new_der[0]); /* Move "end" position to cover only this item */ *endp = new_der + len; return new_der; } static uint8_t *skip_der_item(uint8_t *der, uint8_t *end) { uint8_t *new_der; unsigned len = get_der_len(&new_der, der, end); /* Skip body */ new_der += len; dbg_der("skipped der 0x%02x, next byte 0x%02x\n", der[0], new_der[0]); return new_der; } static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end) { uint8_t *bin_ptr; unsigned len = get_der_len(&bin_ptr, der, end); dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]); binary_to_pstm(pstm_n, bin_ptr, len); } static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len) { /* Certificate is a DER-encoded data structure. Each DER element has a length, * which makes it easy to skip over large compound elements of any complexity * without parsing them. Example: partial decode of kernel.org certificate: * SEQ 0x05ac/1452 bytes (Certificate): 308205ac * SEQ 0x0494/1172 bytes (tbsCertificate): 30820494 * [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0] 3 bytes: a003 * INTEGER (version): 0201 02 * INTEGER 0x11 bytes (serialNumber): 0211 00 9f85bf664b0cddafca508679501b2be4 * //^^^^^^note: matrixSSL also allows [ASN_CONTEXT_SPECIFIC | ASN_PRIMITIVE | 2] = 0x82 type * SEQ 0x0d bytes (signatureAlgo): 300d * OID 9 bytes: 0609 2a864886f70d01010b (OID_SHA256_RSA_SIG 42.134.72.134.247.13.1.1.11) * NULL: 0500 * SEQ 0x5f bytes (issuer): 305f * SET 11 bytes: 310b * SEQ 9 bytes: 3009 * OID 3 bytes: 0603 550406 * Printable string "FR": 1302 4652 * SET 14 bytes: 310e * SEQ 12 bytes: 300c * OID 3 bytes: 0603 550408 * Printable string "Paris": 1305 5061726973 * SET 14 bytes: 310e * SEQ 12 bytes: 300c * OID 3 bytes: 0603 550407 * Printable string "Paris": 1305 5061726973 * SET 14 bytes: 310e * SEQ 12 bytes: 300c * OID 3 bytes: 0603 55040a * Printable string "Gandi": 1305 47616e6469 * SET 32 bytes: 3120 * SEQ 30 bytes: 301e * OID 3 bytes: 0603 550403 * Printable string "Gandi Standard SSL CA 2": 1317 47616e6469205374616e646172642053534c2043412032 * SEQ 30 bytes (validity): 301e * TIME "161011000000Z": 170d 3136313031313030303030305a * TIME "191011235959Z": 170d 3139313031313233353935395a * SEQ 0x5b/91 bytes (subject): 305b //I did not decode this * 3121301f060355040b1318446f6d61696e20436f * 6e74726f6c2056616c6964617465643121301f06 * 0355040b1318506f73697469766553534c204d75 * 6c74692d446f6d61696e31133011060355040313 * 0a6b65726e656c2e6f7267 * SEQ 0x01a2/418 bytes (subjectPublicKeyInfo): 308201a2 * SEQ 13 bytes (algorithm): 300d * OID 9 bytes: 0609 2a864886f70d010101 (OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1) * NULL: 0500 * BITSTRING 0x018f/399 bytes (publicKey): 0382018f * ????: 00 * //after the zero byte, it appears key itself uses DER encoding: * SEQ 0x018a/394 bytes: 3082018a * INTEGER 0x0181/385 bytes (modulus): 02820181 * 00b1ab2fc727a3bef76780c9349bf3 * ...24 more blocks of 15 bytes each... * 90e895291c6bc8693b65 * INTEGER 3 bytes (exponent): 0203 010001 * [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0x3] 0x01e5 bytes (X509v3 extensions): a38201e5 * SEQ 0x01e1 bytes: 308201e1 * ... * Certificate is a sequence of three elements: * tbsCertificate (SEQ) * signatureAlgorithm (AlgorithmIdentifier) * signatureValue (BIT STRING) * * In turn, tbsCertificate is a sequence of: * version * serialNumber * signatureAlgo (AlgorithmIdentifier) * issuer (Name, has complex structure) * validity (Validity, SEQ of two Times) * subject (Name) * subjectPublicKeyInfo (SEQ) * ... * * subjectPublicKeyInfo is a sequence of: * algorithm (AlgorithmIdentifier) * publicKey (BIT STRING) * * We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey * * Example of an ECDSA key: * SEQ 0x59 bytes (subjectPublicKeyInfo): 3059 * SEQ 0x13 bytes (algorithm): 3013 * OID 7 bytes: 0607 2a8648ce3d0201 (OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1) * OID 8 bytes: 0608 2a8648ce3d030107 (OID_EC_prime256v1 42.134.72.206.61.3.1.7) * BITSTRING 0x42 bytes (publicKey): 0342 * 0004 53af f65e 50cc 7959 7e29 0171 c75c * 7335 e07d f45b 9750 b797 3a38 aebb 2ac6 * 8329 2748 e77e 41cb d482 2ce6 05ec a058 * f3ab d561 2f4c d845 9ad3 7252 e3de bd3b * 9012 */ uint8_t *end = der + len; /* enter "Certificate" item: [der, end) will be only Cert */ der = enter_der_item(der, &end); /* enter "tbsCertificate" item: [der, end) will be only tbsCert */ der = enter_der_item(der, &end); /* * Skip version field only if it is present. For a v1 certificate, the * version field won't be present since v1 is the default value for the * version field and fields with default values should be omitted (see * RFC 5280 sections 4.1 and 4.1.2.1). If the version field is present * it will have a tag class of 2 (context-specific), bit 6 as 1 * (constructed), and a tag number of 0 (see ITU-T X.690 sections 8.1.2 * and 8.14). */ /* bits 7-6: 10 */ /* bit 5: 1 */ /* bits 4-0: 00000 */ if (der[0] == 0xa0) der = skip_der_item(der, end); /* version */ /* skip up to subjectPublicKeyInfo */ der = skip_der_item(der, end); /* serialNumber */ der = skip_der_item(der, end); /* signatureAlgo */ der = skip_der_item(der, end); /* issuer */ der = skip_der_item(der, end); /* validity */ der = skip_der_item(der, end); /* subject */ /* enter subjectPublicKeyInfo */ der = enter_der_item(der, &end); { /* check subjectPublicKeyInfo.algorithm */ static const uint8_t OID_RSA_KEY_ALG[] = { 0x30,0x0d, // SEQ 13 bytes 0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, //OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1 //0x05,0x00, // NULL }; static const uint8_t OID_ECDSA_KEY_ALG[] = { 0x30,0x13, // SEQ 0x13 bytes 0x06,0x07, 0x2a,0x86,0x48,0xce,0x3d,0x02,0x01, //OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1 //allow any curve code for now... // 0x06,0x08, 0x2a,0x86,0x48,0xce,0x3d,0x03,0x01,0x07, //OID_EC_prime256v1 42.134.72.206.61.3.1.7 //RFC 3279: //42.134.72.206.61.3 is ellipticCurve //42.134.72.206.61.3.0 is c-TwoCurve //42.134.72.206.61.3.1 is primeCurve //42.134.72.206.61.3.1.7 is curve_secp256r1 }; if (memcmp(der, OID_RSA_KEY_ALG, sizeof(OID_RSA_KEY_ALG)) == 0) { dbg("RSA key\n"); tls->flags |= GOT_CERT_RSA_KEY_ALG; } else if (memcmp(der, OID_ECDSA_KEY_ALG, sizeof(OID_ECDSA_KEY_ALG)) == 0) { dbg("ECDSA key\n"); tls->flags |= GOT_CERT_ECDSA_KEY_ALG; } else bb_error_msg_and_die("not RSA or ECDSA cert"); } if (tls->flags & GOT_CERT_RSA_KEY_ALG) { /* parse RSA key: */ //based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note /* skip subjectPublicKeyInfo.algorithm */ der = skip_der_item(der, end); /* enter subjectPublicKeyInfo.publicKey */ //die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */ der = enter_der_item(der, &end); dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]); if (end - der < 14) xfunc_die(); /* example format: * ignore bits: 00 * SEQ 0x018a/394 bytes: 3082018a * INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX * INTEGER 3 bytes (exponent): 0203 010001 */ if (*der != 0) /* "ignore bits", should be 0 */ xfunc_die(); der++; der = enter_der_item(der, &end); /* enter SEQ */ /* memset(tls->hsd->server_rsa_pub_key, 0, sizeof(tls->hsd->server_rsa_pub_key)); - already is */ der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.N, der, end); /* modulus */ der = skip_der_item(der, end); der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.e, der, end); /* exponent */ tls->hsd->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->hsd->server_rsa_pub_key.N); dbg("server_rsa_pub_key.size:%d\n", tls->hsd->server_rsa_pub_key.size); } /* else: ECDSA key. It is not used for generating encryption keys, * it is used only to sign the EC public key (which comes in ServerKey message). * Since we do not verify cert validity, verifying signature on EC public key * wouldn't add any security. Thus, we do nothing here. */ } /* * TLS Handshake routines */ static int tls_xread_handshake_block(tls_state_t *tls, int min_len) { struct record_hdr *xhdr; int len = tls_xread_record(tls, "handshake record"); xhdr = (void*)tls->inbuf; if (len < min_len || xhdr->type != RECORD_TYPE_HANDSHAKE ) { bad_record_die(tls, "handshake record", len); } dbg("got HANDSHAKE\n"); return len; } static ALWAYS_INLINE void fill_handshake_record_hdr(void *buf, unsigned type, unsigned len) { struct handshake_hdr { uint8_t type; uint8_t len24_hi, len24_mid, len24_lo; } *h = buf; len -= 4; h->type = type; h->len24_hi = len >> 16; h->len24_mid = len >> 8; h->len24_lo = len & 0xff; } static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni) { static const uint8_t supported_groups[] = { 0x00,0x0a, //extension_type: "supported_groups" 0x00,0x04, //ext len 0x00,0x02, //list len 0x00,0x1d, //curve_x25519 (rfc7748) //0x00,0x17, //curve_secp256r1 //0x00,0x18, //curve_secp384r1 //0x00,0x19, //curve_secp521r1 }; //static const uint8_t signature_algorithms[] = { // 000d // 0020 // 001e // 0601 0602 0603 0501 0502 0503 0401 0402 0403 0301 0302 0303 0201 0202 0203 //}; struct client_hello { uint8_t type; uint8_t len24_hi, len24_mid, len24_lo; uint8_t proto_maj, proto_min; uint8_t rand32[32]; uint8_t session_id_len; /* uint8_t session_id[]; */ uint8_t cipherid_len16_hi, cipherid_len16_lo; uint8_t cipherid[2 * (1 + NUM_CIPHERS)]; /* actually variable */ uint8_t comprtypes_len; uint8_t comprtypes[1]; /* actually variable */ /* Extensions (SNI shown): * hi,lo // len of all extensions * 00,00 // extension_type: "Server Name" * 00,0e // list len (there can be more than one SNI) * 00,0c // len of 1st Server Name Indication * 00 // name type: host_name * 00,09 // name len * "localhost" // name */ // GNU Wget 1.18 to cdn.kernel.org sends these extensions: // 0055 // 0005 0005 0100000000 - status_request // 0000 0013 0011 00 000e 63646e 2e 6b65726e656c 2e 6f7267 - server_name // ff01 0001 00 - renegotiation_info // 0023 0000 - session_ticket // 000a 0008 0006001700180019 - supported_groups // 000b 0002 0100 - ec_point_formats // 000d 0016 0014 0401 0403 0501 0503 0601 0603 0301 0303 0201 0203 - signature_algorithms // wolfssl library sends this option, RFC 7627 (closes a security weakness, some servers may require it. TODO?): // 0017 0000 - extended master secret }; struct client_hello *record; uint8_t *ptr; int len; int ext_len; int sni_len = sni ? strnlen(sni, 127 - 5) : 0; ext_len = 0; /* is.gd responds with "handshake failure" to our hello if there's no supported_groups element */ ext_len += sizeof(supported_groups); if (sni_len) ext_len += 9 + sni_len; /* +2 is for "len of all extensions" 2-byte field */ len = sizeof(*record) + 2 + ext_len; record = tls_get_zeroed_outbuf(tls, len); fill_handshake_record_hdr(record, HANDSHAKE_CLIENT_HELLO, len); record->proto_maj = TLS_MAJ; /* the "requested" version of the protocol, */ record->proto_min = TLS_MIN; /* can be higher than one in record headers */ tls_get_random(record->rand32, sizeof(record->rand32)); if (TLS_DEBUG_FIXED_SECRETS) memset(record->rand32, 0x11, sizeof(record->rand32)); /* record->session_id_len = 0; - already is */ /* record->cipherid_len16_hi = 0; */ record->cipherid_len16_lo = sizeof(record->cipherid); /* RFC 5746 Renegotiation Indication Extension - some servers will refuse to work with us otherwise */ /*record->cipherid[0] = TLS_EMPTY_RENEGOTIATION_INFO_SCSV >> 8; - zero */ record->cipherid[1] = TLS_EMPTY_RENEGOTIATION_INFO_SCSV & 0xff; if ((CIPHER_ID1 >> 8) != 0) record->cipherid[2] = CIPHER_ID1 >> 8; /*************************/ record->cipherid[3] = CIPHER_ID1 & 0xff; #if CIPHER_ID2 if ((CIPHER_ID2 >> 8) != 0) record->cipherid[4] = CIPHER_ID2 >> 8; /*************************/ record->cipherid[5] = CIPHER_ID2 & 0xff; #endif #if CIPHER_ID3 if ((CIPHER_ID3 >> 8) != 0) record->cipherid[6] = CIPHER_ID3 >> 8; /*************************/ record->cipherid[7] = CIPHER_ID3 & 0xff; #endif #if CIPHER_ID4 if ((CIPHER_ID4 >> 8) != 0) record->cipherid[6] = CIPHER_ID4 >> 8; /*************************/ record->cipherid[7] = CIPHER_ID4 & 0xff; #endif record->comprtypes_len = 1; /* record->comprtypes[0] = 0; */ ptr = (void*)(record + 1); *ptr++ = ext_len >> 8; *ptr++ = ext_len; if (sni_len) { //ptr[0] = 0; // //ptr[1] = 0; //extension_type //ptr[2] = 0; // ptr[3] = sni_len + 5; //list len //ptr[4] = 0; // ptr[5] = sni_len + 3; //len of 1st SNI //ptr[6] = 0; //name type //ptr[7] = 0; // ptr[8] = sni_len; //name len ptr = mempcpy(&ptr[9], sni, sni_len); } memcpy(ptr, supported_groups, sizeof(supported_groups)); tls->hsd = xzalloc(sizeof(*tls->hsd)); /* HANDSHAKE HASH: ^^^ + len if need to save saved_client_hello */ memcpy(tls->hsd->client_and_server_rand32, record->rand32, sizeof(record->rand32)); /* HANDSHAKE HASH: tls->hsd->saved_client_hello_size = len; memcpy(tls->hsd->saved_client_hello, record, len); */ dbg(">> CLIENT_HELLO\n"); /* Can hash immediately only if we know which MAC hash to use. * So far we do know: it's sha256: */ sha256_begin(&tls->hsd->handshake_hash_ctx); xwrite_and_update_handshake_hash(tls, len); /* if this would become infeasible: save tls->hsd->saved_client_hello, * use "xwrite_handshake_record(tls, len)" here, * and hash saved_client_hello later. */ } static void get_server_hello(tls_state_t *tls) { struct server_hello { struct record_hdr xhdr; uint8_t type; uint8_t len24_hi, len24_mid, len24_lo; uint8_t proto_maj, proto_min; uint8_t rand32[32]; /* first 4 bytes are unix time in BE format */ uint8_t session_id_len; uint8_t session_id[32]; uint8_t cipherid_hi, cipherid_lo; uint8_t comprtype; /* extensions may follow, but only those which client offered in its Hello */ }; struct server_hello *hp; uint8_t *cipherid; unsigned cipher; int len, len24; len = tls_xread_handshake_block(tls, 74 - 32); hp = (void*)tls->inbuf; // 74 bytes: // 02 000046 03|03 58|78|cf|c1 50|a5|49|ee|7e|29|48|71|fe|97|fa|e8|2d|19|87|72|90|84|9d|37|a3|f0|cb|6f|5f|e3|3c|2f |20 |d8|1a|78|96|52|d6|91|01|24|b3|d6|5b|b7|d0|6c|b3|e1|78|4e|3c|95|de|74|a0|ba|eb|a7|3a|ff|bd|a2|bf |00|9c |00| //SvHl len=70 maj.min unixtime^^^ 28randbytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^ slen sid32bytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cipSel comprSel if (hp->type != HANDSHAKE_SERVER_HELLO || hp->len24_hi != 0 || hp->len24_mid != 0 /* hp->len24_lo checked later */ || hp->proto_maj != TLS_MAJ || hp->proto_min != TLS_MIN ) { bad_record_die(tls, "'server hello'", len); } cipherid = &hp->cipherid_hi; len24 = hp->len24_lo; if (hp->session_id_len != 32) { if (hp->session_id_len != 0) bad_record_die(tls, "'server hello'", len); // session_id_len == 0: no session id // "The server // may return an empty session_id to indicate that the session will // not be cached and therefore cannot be resumed." cipherid -= 32; len24 += 32; /* what len would be if session id would be present */ } if (len24 < 70 // || cipherid[0] != (CIPHER_ID >> 8) // || cipherid[1] != (CIPHER_ID & 0xff) // || cipherid[2] != 0 /* comprtype */ ) { bad_record_die(tls, "'server hello'", len); } dbg("<< SERVER_HELLO\n"); memcpy(tls->hsd->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32)); tls->cipher_id = cipher = 0x100 * cipherid[0] + cipherid[1]; dbg("server chose cipher %04x\n", cipher); if (cipher == TLS_RSA_WITH_AES_128_CBC_SHA || cipher == TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ) { if (cipher == TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA) tls->flags |= NEED_EC_KEY; tls->key_size = AES128_KEYSIZE; tls->MAC_size = SHA1_OUTSIZE; } else if (cipher == TLS_RSA_WITH_AES_256_CBC_SHA256) { tls->key_size = AES256_KEYSIZE; tls->MAC_size = SHA256_OUTSIZE; } else { /* TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 */ tls->flags |= NEED_EC_KEY | ENCRYPTION_AESGCM; tls->key_size = AES128_KEYSIZE; /* tls->MAC_size = 0; */ tls->IV_size = 4; } /* Handshake hash eventually destined to FINISHED record * is sha256 regardless of cipher * (at least for all ciphers defined by RFC5246). * It's not sha1 for AES_128_CBC_SHA - only MAC is sha1, not this hash. */ /* HANDSHAKE HASH: sha256_begin(&tls->hsd->handshake_hash_ctx); hash_handshake(tls, ">> client hello hash:%s", tls->hsd->saved_client_hello, tls->hsd->saved_client_hello_size ); hash_handshake(tls, "<< server hello hash:%s", tls->inbuf + RECHDR_LEN, len ); */ } static void get_server_cert(tls_state_t *tls) { struct record_hdr *xhdr; uint8_t *certbuf; int len, len1; len = tls_xread_handshake_block(tls, 10); xhdr = (void*)tls->inbuf; certbuf = (void*)(xhdr + 1); if (certbuf[0] != HANDSHAKE_CERTIFICATE) bad_record_die(tls, "certificate", len); dbg("<< CERTIFICATE\n"); // 4392 bytes: // 0b 00|11|24 00|11|21 00|05|b0 30|82|05|ac|30|82|04|94|a0|03|02|01|02|02|11|00|9f|85|bf|66|4b|0c|dd|af|ca|50|86|79|50|1b|2b|e4|30|0d... //Cert len=4388 ChainLen CertLen^ DER encoded X509 starts here. openssl x509 -in FILE -inform DER -noout -text len1 = get24be(certbuf + 1); if (len1 > len - 4) tls_error_die(tls); len = len1; len1 = get24be(certbuf + 4); if (len1 > len - 3) tls_error_die(tls); len = len1; len1 = get24be(certbuf + 7); if (len1 > len - 3) tls_error_die(tls); len = len1; if (len) find_key_in_der_cert(tls, certbuf + 10, len); } /* On input, len is known to be >= 4. * The record is known to be SERVER_KEY_EXCHANGE. */ static void process_server_key(tls_state_t *tls, int len) { struct record_hdr *xhdr; uint8_t *keybuf; int len1; uint32_t t32; xhdr = (void*)tls->inbuf; keybuf = (void*)(xhdr + 1); //seen from is.gd: it selects curve_x25519: // 0c 00006e //SERVER_KEY_EXCHANGE, len // 03 //curve_type: named curve // 001d //curve_x25519 //server-chosen EC point, and then signed_params // (RFC 8422: "A hash of the params, with the signature // appropriate to that hash applied. The private key corresponding // to the certified public key in the server's Certificate message is // used for signing.") //follow. Format unclear/guessed: // 20 //eccPubKeyLen // 25511923d73b70dd2f60e66ba2f3fda31a9c25170963c7a3a972e481dbb2835d //eccPubKey (32bytes) // 0203 //hashSigAlg: 2:SHA1 (4:SHA256 5:SHA384 6:SHA512), 3:ECDSA (1:RSA) // 0046 //len (16bit) // 30 44 //SEQ, len // 02 20 //INTEGER, len // 2e18e7c2a9badd0a70cd3059a6ab114539b9f5163568911147386cd77ed7c412 //32bytes //this item ^^^^^ is sometimes 33 bytes (with all container sizes also +1) // 02 20 //INTEGER, len // 64523d6216cb94c43c9b20e377d8c52c55be6703fd6730a155930c705eaf3af6 //32bytes //same about this item ^^^^^ //seen from ftp.openbsd.org //(which only accepts ECDHE-RSA-AESnnn-GCM-SHAnnn and ECDHE-RSA-CHACHA20-POLY1305 ciphers): // 0c 000228 //SERVER_KEY_EXCHANGE, len // 03 //curve_type: named curve // 001d //curve_x25519 // 20 //eccPubKeyLen // eef7a15c43b71a4c7eaa48a39369399cc4332e569ec90a83274cc92596705c1a //eccPubKey // 0401 //hashSigAlg: 4:SHA256, 1:RSA // 0200 //len // //0x200 bytes follow /* Get and verify length */ len1 = get24be(keybuf + 1); if (len1 > len - 4) tls_error_die(tls); len = len1; if (len < (1+2+1+32)) tls_error_die(tls); keybuf += 4; /* So far we only support curve_x25519 */ move_from_unaligned32(t32, keybuf); if (t32 != htonl(0x03001d20)) bb_error_msg_and_die("elliptic curve is not x25519"); memcpy(tls->hsd->ecc_pub_key32, keybuf + 4, 32); tls->flags |= GOT_EC_KEY; dbg("got eccPubKey\n"); } static void send_empty_client_cert(tls_state_t *tls) { struct client_empty_cert { uint8_t type; uint8_t len24_hi, len24_mid, len24_lo; uint8_t cert_chain_len24_hi, cert_chain_len24_mid, cert_chain_len24_lo; }; struct client_empty_cert *record; record = tls_get_zeroed_outbuf(tls, sizeof(*record)); //fill_handshake_record_hdr(record, HANDSHAKE_CERTIFICATE, sizeof(*record)); //record->cert_chain_len24_hi = 0; //record->cert_chain_len24_mid = 0; //record->cert_chain_len24_lo = 0; // same as above: record->type = HANDSHAKE_CERTIFICATE; record->len24_lo = 3; dbg(">> CERTIFICATE\n"); xwrite_and_update_handshake_hash(tls, sizeof(*record)); } static void send_client_key_exchange(tls_state_t *tls) { struct client_key_exchange { uint8_t type; uint8_t len24_hi, len24_mid, len24_lo; uint8_t key[2 + 4 * 1024]; // size?? }; //FIXME: better size estimate struct client_key_exchange *record = tls_get_zeroed_outbuf(tls, sizeof(*record)); uint8_t rsa_premaster[RSA_PREMASTER_SIZE]; uint8_t x25519_premaster[CURVE25519_KEYSIZE]; uint8_t *premaster; int premaster_size; int len; if (!(tls->flags & NEED_EC_KEY)) { /* RSA */ if (!(tls->flags & GOT_CERT_RSA_KEY_ALG)) bb_error_msg("server cert is not RSA"); tls_get_random(rsa_premaster, sizeof(rsa_premaster)); if (TLS_DEBUG_FIXED_SECRETS) memset(rsa_premaster, 0x44, sizeof(rsa_premaster)); // RFC 5246 // "Note: The version number in the PreMasterSecret is the version // offered by the client in the ClientHello.client_version, not the // version negotiated for the connection." rsa_premaster[0] = TLS_MAJ; rsa_premaster[1] = TLS_MIN; dump_hex("premaster:%s\n", rsa_premaster, sizeof(rsa_premaster)); len = psRsaEncryptPub(/*pool:*/ NULL, /* psRsaKey_t* */ &tls->hsd->server_rsa_pub_key, rsa_premaster, /*inlen:*/ sizeof(rsa_premaster), record->key + 2, sizeof(record->key) - 2, data_param_ignored ); /* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */ record->key[0] = len >> 8; record->key[1] = len & 0xff; len += 2; premaster = rsa_premaster; premaster_size = sizeof(rsa_premaster); } else { /* ECDHE */ static const uint8_t basepoint9[CURVE25519_KEYSIZE] = {9}; uint8_t privkey[CURVE25519_KEYSIZE]; //[32] if (!(tls->flags & GOT_EC_KEY)) bb_error_msg("server did not provide EC key"); /* Generate random private key, see RFC 7748 */ tls_get_random(privkey, sizeof(privkey)); privkey[0] &= 0xf8; privkey[CURVE25519_KEYSIZE-1] = ((privkey[CURVE25519_KEYSIZE-1] & 0x7f) | 0x40); /* Compute public key */ curve25519(record->key + 1, privkey, basepoint9); /* Compute premaster using peer's public key */ dbg("computing x25519_premaster\n"); curve25519(x25519_premaster, privkey, tls->hsd->ecc_pub_key32); len = CURVE25519_KEYSIZE; record->key[0] = len; len++; premaster = x25519_premaster; premaster_size = sizeof(x25519_premaster); } record->type = HANDSHAKE_CLIENT_KEY_EXCHANGE; /* record->len24_hi = 0; - already is */ record->len24_mid = len >> 8; record->len24_lo = len & 0xff; len += 4; dbg(">> CLIENT_KEY_EXCHANGE\n"); xwrite_and_update_handshake_hash(tls, len); // RFC 5246 // For all key exchange methods, the same algorithm is used to convert // the pre_master_secret into the master_secret. The pre_master_secret // should be deleted from memory once the master_secret has been // computed. // master_secret = PRF(pre_master_secret, "master secret", // ClientHello.random + ServerHello.random) // [0..47]; // The master secret is always exactly 48 bytes in length. The length // of the premaster secret will vary depending on key exchange method. prf_hmac_sha256(/*tls,*/ tls->hsd->master_secret, sizeof(tls->hsd->master_secret), premaster, premaster_size, "master secret", tls->hsd->client_and_server_rand32, sizeof(tls->hsd->client_and_server_rand32) ); dump_hex("master secret:%s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret)); // RFC 5246 // 6.3. Key Calculation // // The Record Protocol requires an algorithm to generate keys required // by the current connection state (see Appendix A.6) from the security // parameters provided by the handshake protocol. // // The master secret is expanded into a sequence of secure bytes, which // is then split to a client write MAC key, a server write MAC key, a // client write encryption key, and a server write encryption key. Each // of these is generated from the byte sequence in that order. Unused // values are empty. Some AEAD ciphers may additionally require a // client write IV and a server write IV (see Section 6.2.3.3). // // When keys and MAC keys are generated, the master secret is used as an // entropy source. // // To generate the key material, compute // // key_block = PRF(SecurityParameters.master_secret, // "key expansion", // SecurityParameters.server_random + // SecurityParameters.client_random); // // until enough output has been generated. Then, the key_block is // partitioned as follows: // // client_write_MAC_key[SecurityParameters.mac_key_length] // server_write_MAC_key[SecurityParameters.mac_key_length] // client_write_key[SecurityParameters.enc_key_length] // server_write_key[SecurityParameters.enc_key_length] // client_write_IV[SecurityParameters.fixed_iv_length] // server_write_IV[SecurityParameters.fixed_iv_length] { uint8_t tmp64[64]; /* make "server_rand32 + client_rand32" */ memcpy(&tmp64[0] , &tls->hsd->client_and_server_rand32[32], 32); memcpy(&tmp64[32], &tls->hsd->client_and_server_rand32[0] , 32); prf_hmac_sha256(/*tls,*/ tls->client_write_MAC_key, 2 * (tls->MAC_size + tls->key_size + tls->IV_size), // also fills: // server_write_MAC_key[] // client_write_key[] // server_write_key[] // client_write_IV[] // server_write_IV[] tls->hsd->master_secret, sizeof(tls->hsd->master_secret), "key expansion", tmp64, 64 ); tls->client_write_key = tls->client_write_MAC_key + (2 * tls->MAC_size); tls->server_write_key = tls->client_write_key + tls->key_size; tls->client_write_IV = tls->server_write_key + tls->key_size; tls->server_write_IV = tls->client_write_IV + tls->IV_size; dump_hex("client_write_MAC_key:%s\n", tls->client_write_MAC_key, tls->MAC_size ); dump_hex("client_write_key:%s\n", tls->client_write_key, tls->key_size ); dump_hex("client_write_IV:%s\n", tls->client_write_IV, tls->IV_size ); aes_setkey(&tls->aes_decrypt, tls->server_write_key, tls->key_size); aes_setkey(&tls->aes_encrypt, tls->client_write_key, tls->key_size); { uint8_t iv[AES_BLOCK_SIZE]; memset(iv, 0, AES_BLOCK_SIZE); aes_encrypt_one_block(&tls->aes_encrypt, iv, tls->H); } } } static const uint8_t rec_CHANGE_CIPHER_SPEC[] = { RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01, 01 }; static void send_change_cipher_spec(tls_state_t *tls) { dbg(">> CHANGE_CIPHER_SPEC\n"); xwrite(tls->ofd, rec_CHANGE_CIPHER_SPEC, sizeof(rec_CHANGE_CIPHER_SPEC)); } // 7.4.9. Finished // A Finished message is always sent immediately after a change // cipher spec message to verify that the key exchange and // authentication processes were successful. It is essential that a // change cipher spec message be received between the other handshake // messages and the Finished message. //... // The Finished message is the first one protected with the just // negotiated algorithms, keys, and secrets. Recipients of Finished // messages MUST verify that the contents are correct. Once a side // has sent its Finished message and received and validated the // Finished message from its peer, it may begin to send and receive // application data over the connection. //... // struct { // opaque verify_data[verify_data_length]; // } Finished; // // verify_data // PRF(master_secret, finished_label, Hash(handshake_messages)) // [0..verify_data_length-1]; // // finished_label // For Finished messages sent by the client, the string // "client finished". For Finished messages sent by the server, // the string "server finished". // // Hash denotes a Hash of the handshake messages. For the PRF // defined in Section 5, the Hash MUST be the Hash used as the basis // for the PRF. Any cipher suite which defines a different PRF MUST // also define the Hash to use in the Finished computation. // // In previous versions of TLS, the verify_data was always 12 octets // long. In the current version of TLS, it depends on the cipher // suite. Any cipher suite which does not explicitly specify // verify_data_length has a verify_data_length equal to 12. This // includes all existing cipher suites. static void send_client_finished(tls_state_t *tls) { struct finished { uint8_t type; uint8_t len24_hi, len24_mid, len24_lo; uint8_t prf_result[12]; }; struct finished *record = tls_get_outbuf(tls, sizeof(*record)); uint8_t handshake_hash[TLS_MAX_MAC_SIZE]; unsigned len; fill_handshake_record_hdr(record, HANDSHAKE_FINISHED, sizeof(*record)); len = get_handshake_hash(tls, handshake_hash); prf_hmac_sha256(/*tls,*/ record->prf_result, sizeof(record->prf_result), tls->hsd->master_secret, sizeof(tls->hsd->master_secret), "client finished", handshake_hash, len ); dump_hex("from secret: %s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret)); dump_hex("from labelSeed: %s", "client finished", sizeof("client finished")-1); dump_hex("%s\n", handshake_hash, sizeof(handshake_hash)); dump_hex("=> digest: %s\n", record->prf_result, sizeof(record->prf_result)); dbg(">> FINISHED\n"); xwrite_encrypted(tls, sizeof(*record), RECORD_TYPE_HANDSHAKE); } void FAST_FUNC tls_handshake(tls_state_t *tls, const char *sni) { // Client RFC 5246 Server // (*) - optional messages, not always sent // // ClientHello -------> // ServerHello // Certificate* // ServerKeyExchange* // CertificateRequest* // <------- ServerHelloDone // Certificate* // ClientKeyExchange // CertificateVerify* // [ChangeCipherSpec] // Finished -------> // [ChangeCipherSpec] // <------- Finished // Application Data <------> Application Data int len; int got_cert_req; send_client_hello_and_alloc_hsd(tls, sni); get_server_hello(tls); // RFC 5246 // The server MUST send a Certificate message whenever the agreed- // upon key exchange method uses certificates for authentication // (this includes all key exchange methods defined in this document // except DH_anon). This message will always immediately follow the // ServerHello message. // // IOW: in practice, Certificate *always* follows. // (for example, kernel.org does not even accept DH_anon cipher id) get_server_cert(tls); len = tls_xread_handshake_block(tls, 4); if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_SERVER_KEY_EXCHANGE) { // 459 bytes: // 0c 00|01|c7 03|00|17|41|04|87|94|2e|2f|68|d0|c9|f4|97|a8|2d|ef|ed|67|ea|c6|f3|b3|56|47|5d|27|b6|bd|ee|70|25|30|5e|b0|8e|f6|21|5a... //SvKey len=455^ // with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes: // 0c 00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75... // // RFC 8422 5.4. Server Key Exchange // This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and // ECDH_anon key exchange algorithms. // This message is used to convey the server's ephemeral ECDH public key // (and the corresponding elliptic curve domain parameters) to the // client. dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len); dump_raw_in("<< %s\n", tls->inbuf, RECHDR_LEN + len); if (tls->flags & NEED_EC_KEY) process_server_key(tls, len); // read next handshake block len = tls_xread_handshake_block(tls, 4); } got_cert_req = (tls->inbuf[RECHDR_LEN] == HANDSHAKE_CERTIFICATE_REQUEST); if (got_cert_req) { dbg("<< CERTIFICATE_REQUEST\n"); // RFC 5246: "If no suitable certificate is available, // the client MUST send a certificate message containing no // certificates. That is, the certificate_list structure has a // length of zero. ... // Client certificates are sent using the Certificate structure // defined in Section 7.4.2." // (i.e. the same format as server certs) /*send_empty_client_cert(tls); - WRONG (breaks handshake hash calc) */ /* need to hash _all_ server replies first, up to ServerHelloDone */ len = tls_xread_handshake_block(tls, 4); } if (tls->inbuf[RECHDR_LEN] != HANDSHAKE_SERVER_HELLO_DONE) { bad_record_die(tls, "'server hello done'", len); } // 0e 000000 (len:0) dbg("<< SERVER_HELLO_DONE\n"); if (got_cert_req) send_empty_client_cert(tls); send_client_key_exchange(tls); send_change_cipher_spec(tls); /* from now on we should send encrypted */ /* tls->write_seq64_be = 0; - already is */ tls->encrypt_on_write = 1; send_client_finished(tls); /* Get CHANGE_CIPHER_SPEC */ len = tls_xread_record(tls, "switch to encrypted traffic"); if (len != 1 || memcmp(tls->inbuf, rec_CHANGE_CIPHER_SPEC, 6) != 0) bad_record_die(tls, "switch to encrypted traffic", len); dbg("<< CHANGE_CIPHER_SPEC\n"); if (CIPHER_ID1 == TLS_RSA_WITH_NULL_SHA256 && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256 ) { tls->min_encrypted_len_on_read = tls->MAC_size; } else if (!(tls->flags & ENCRYPTION_AESGCM)) { unsigned mac_blocks = (unsigned)(tls->MAC_size + AES_BLOCK_SIZE-1) / AES_BLOCK_SIZE; /* all incoming packets now should be encrypted and have * at least IV + (MAC padded to blocksize): */ tls->min_encrypted_len_on_read = AES_BLOCK_SIZE + (mac_blocks * AES_BLOCK_SIZE); } else { tls->min_encrypted_len_on_read = 8 + AES_BLOCK_SIZE; } dbg("min_encrypted_len_on_read: %u\n", tls->min_encrypted_len_on_read); /* Get (encrypted) FINISHED from the server */ len = tls_xread_record(tls, "'server finished'"); if (len < 4 || tls->inbuf[RECHDR_LEN] != HANDSHAKE_FINISHED) bad_record_die(tls, "'server finished'", len); dbg("<< FINISHED\n"); /* application data can be sent/received */ /* free handshake data */ // if (PARANOIA) // memset(tls->hsd, 0, tls->hsd->hsd_size); free(tls->hsd); tls->hsd = NULL; } static void tls_xwrite(tls_state_t *tls, int len) { dbg(">> DATA\n"); xwrite_encrypted(tls, len, RECORD_TYPE_APPLICATION_DATA); } // To run a test server using openssl: // openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost' // openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1 // // Unencryped SHA256 example: // openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost' // openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL // openssl s_client -connect 127.0.0.1:4433 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL-SHA256 void FAST_FUNC tls_run_copy_loop(tls_state_t *tls, unsigned flags) { int inbuf_size; const int INBUF_STEP = 4 * 1024; struct pollfd pfds[2]; pfds[0].fd = STDIN_FILENO; pfds[0].events = POLLIN; pfds[1].fd = tls->ifd; pfds[1].events = POLLIN; inbuf_size = INBUF_STEP; for (;;) { int nread; if (safe_poll(pfds, 2, -1) < 0) bb_perror_msg_and_die("poll"); if (pfds[0].revents) { void *buf; dbg("STDIN HAS DATA\n"); buf = tls_get_outbuf(tls, inbuf_size); nread = safe_read(STDIN_FILENO, buf, inbuf_size); if (nread < 1) { /* We'd want to do this: */ /* Close outgoing half-connection so they get EOF, * but leave incoming alone so we can see response */ //shutdown(tls->ofd, SHUT_WR); /* But TLS has no way to encode this, * doubt it's ok to do it "raw" */ pfds[0].fd = -1; tls_free_outbuf(tls); /* mem usage optimization */ if (flags & TLSLOOP_EXIT_ON_LOCAL_EOF) break; } else { if (nread == inbuf_size) { /* TLS has per record overhead, if input comes fast, * read, encrypt and send bigger chunks */ inbuf_size += INBUF_STEP; if (inbuf_size > TLS_MAX_OUTBUF) inbuf_size = TLS_MAX_OUTBUF; } tls_xwrite(tls, nread); } } if (pfds[1].revents) { dbg("NETWORK HAS DATA\n"); read_record: nread = tls_xread_record(tls, "encrypted data"); if (nread < 1) { /* TLS protocol has no real concept of one-sided shutdowns: * if we get "TLS EOF" from the peer, writes will fail too */ //pfds[1].fd = -1; //close(STDOUT_FILENO); //tls_free_inbuf(tls); /* mem usage optimization */ //continue; break; } if (tls->inbuf[0] != RECORD_TYPE_APPLICATION_DATA) bad_record_die(tls, "encrypted data", nread); xwrite(STDOUT_FILENO, tls->inbuf + RECHDR_LEN, nread); /* We may already have a complete next record buffered, * can process it without network reads (and possible blocking) */ if (tls_has_buffered_record(tls)) goto read_record; } } }