/* * Copyright (C) 2017 Denys Vlasenko * * Licensed under GPLv2, see file LICENSE in this source tree. */ /* This AES implementation is derived from tiny-AES128-C code, * which was put by its author into public domain: * * tiny-AES128-C/unlicense.txt, Dec 8, 2014 * """ * This is free and unencumbered software released into the public domain. * * Anyone is free to copy, modify, publish, use, compile, sell, or * distribute this software, either in source code form or as a compiled * binary, for any purpose, commercial or non-commercial, and by any * means. * * In jurisdictions that recognize copyright laws, the author or authors * of this software dedicate any and all copyright interest in the * software to the public domain. We make this dedication for the benefit * of the public at large and to the detriment of our heirs and * successors. We intend this dedication to be an overt act of * relinquishment in perpetuity of all present and future rights to this * software under copyright law. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * """ */ /* Note that only original tiny-AES128-C code is public domain. * The derived code in this file has been expanded to also implement aes192 * and aes256 and use more efficient word-sized operations in many places, * and put under GPLv2 license. */ #include "tls.h" // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM // The numbers below can be computed dynamically trading ROM for RAM - // This can be useful in (embedded) bootloader applications, where ROM is often limited. static const uint8_t sbox[] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, }; static const uint8_t rsbox[] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, }; // SubWord() is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output word. static uint32_t Subword(uint32_t x) { return (sbox[(x >> 24) ] << 24) | (sbox[(x >> 16) & 255] << 16) | (sbox[(x >> 8 ) & 255] << 8 ) | (sbox[(x ) & 255] ); } // This function produces Nb(Nr+1) round keys. // The round keys are used in each round to decrypt the states. static int KeyExpansion(uint32_t *RoundKey, const void *key, unsigned key_len) { // The round constant word array, Rcon[i], contains the values given by // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8). // Note that i starts at 2, not 0. static const uint8_t Rcon[] ALIGN1 = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 //..... 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6,... // but aes256 only uses values up to 0x36 }; int rounds, words_key, words_RoundKey; int i, j, k; // key_len 16: aes128, rounds 10, words_key 4, words_RoundKey 44 // key_len 24: aes192, rounds 12, words_key 6, words_RoundKey 52 // key_len 32: aes256, rounds 14, words_key 8, words_RoundKey 60 words_key = key_len / 4; rounds = 6 + (key_len / 4); words_RoundKey = 28 + key_len; // The first round key is the key itself. for (i = 0; i < words_key; i++) RoundKey[i] = get_unaligned_be32((uint32_t*)key + i); // i == words_key now // All other round keys are found from the previous round keys. j = k = 0; for (; i < words_RoundKey; i++) { uint32_t tempa; tempa = RoundKey[i - 1]; if (j == 0) { // RotWord(): rotates the 4 bytes in a word to the left once. tempa = (tempa << 8) | (tempa >> 24); tempa = Subword(tempa); tempa ^= (uint32_t)Rcon[k] << 24; } else if (words_key > 6 && j == 4) { tempa = Subword(tempa); } RoundKey[i] = RoundKey[i - words_key] ^ tempa; j++; if (j == words_key) { j = 0; k++; } } return rounds; } // This function adds the round key to state. // The round key is added to the state by an XOR function. static void AddRoundKey(unsigned astate[16], const uint32_t *RoundKeys) { int i; for (i = 0; i < 16; i += 4) { uint32_t n = *RoundKeys++; astate[i + 0] ^= (n >> 24); astate[i + 1] ^= (n >> 16) & 255; astate[i + 2] ^= (n >> 8) & 255; astate[i + 3] ^= n & 255; } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. static void SubBytes(unsigned astate[16]) { int i; for (i = 0; i < 16; i++) astate[i] = sbox[astate[i]]; } // Our code actually stores "columns" (in aes encryption terminology) // of state in rows: first 4 elements are "row 0, col 0", "row 1, col 0". // "row 2, col 0", "row 3, col 0". The fifth element is "row 0, col 1", // and so on. #define ASTATE(col,row) astate[(col)*4 + (row)] // The ShiftRows() function shifts the rows in the state to the left. // Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. static void ShiftRows(unsigned astate[16]) { unsigned v; // Rotate first row 1 columns to left v = ASTATE(0,1); ASTATE(0,1) = ASTATE(1,1); ASTATE(1,1) = ASTATE(2,1); ASTATE(2,1) = ASTATE(3,1); ASTATE(3,1) = v; // Rotate second row 2 columns to left v = ASTATE(0,2); ASTATE(0,2) = ASTATE(2,2); ASTATE(2,2) = v; v = ASTATE(1,2); ASTATE(1,2) = ASTATE(3,2); ASTATE(3,2) = v; // Rotate third row 3 columns to left v = ASTATE(3,3); ASTATE(3,3) = ASTATE(2,3); ASTATE(2,3) = ASTATE(1,3); ASTATE(1,3) = ASTATE(0,3); ASTATE(0,3) = v; } // MixColumns function mixes the columns of the state matrix static void MixColumns(unsigned astate[16]) { int i; for (i = 0; i < 16; i += 4) { unsigned a, b, c, d; unsigned x, y, z, t; a = astate[i + 0]; b = astate[i + 1]; c = astate[i + 2]; d = astate[i + 3]; x = (a << 1) ^ b ^ (b << 1) ^ c ^ d; y = a ^ (b << 1) ^ c ^ (c << 1) ^ d; z = a ^ b ^ (c << 1) ^ d ^ (d << 1); t = a ^ (a << 1) ^ b ^ c ^ (d << 1); astate[i + 0] = x ^ ((-(int)(x >> 8)) & 0x11b); astate[i + 1] = y ^ ((-(int)(y >> 8)) & 0x11b); astate[i + 2] = z ^ ((-(int)(z >> 8)) & 0x11b); astate[i + 3] = t ^ ((-(int)(t >> 8)) & 0x11b); } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. static void InvSubBytes(unsigned astate[16]) { int i; for (i = 0; i < 16; i++) astate[i] = rsbox[astate[i]]; } static void InvShiftRows(unsigned astate[16]) { unsigned v; // Rotate first row 1 columns to right v = ASTATE(3,1); ASTATE(3,1) = ASTATE(2,1); ASTATE(2,1) = ASTATE(1,1); ASTATE(1,1) = ASTATE(0,1); ASTATE(0,1) = v; // Rotate second row 2 columns to right v = ASTATE(0,2); ASTATE(0,2) = ASTATE(2,2); ASTATE(2,2) = v; v = ASTATE(1,2); ASTATE(1,2) = ASTATE(3,2); ASTATE(3,2) = v; // Rotate third row 3 columns to right v = ASTATE(0,3); ASTATE(0,3) = ASTATE(1,3); ASTATE(1,3) = ASTATE(2,3); ASTATE(2,3) = ASTATE(3,3); ASTATE(3,3) = v; } static ALWAYS_INLINE unsigned Multiply(unsigned x) { unsigned y; y = x >> 8; return (x ^ y ^ (y << 1) ^ (y << 3) ^ (y << 4)) & 255; } // MixColumns function mixes the columns of the state matrix. // The method used to multiply may be difficult to understand for the inexperienced. // Please use the references to gain more information. static void InvMixColumns(unsigned astate[16]) { int i; for (i = 0; i < 16; i += 4) { unsigned a, b, c, d; unsigned x, y, z, t; a = astate[i + 0]; b = astate[i + 1]; c = astate[i + 2]; d = astate[i + 3]; x = (a << 1) ^ (a << 2) ^ (a << 3) ^ b ^ (b << 1) ^ (b << 3) /***/ ^ c ^ (c << 2) ^ (c << 3) ^ d ^ (d << 3); astate[i + 0] = Multiply(x); y = a ^ (a << 3) ^ (b << 1) ^ (b << 2) ^ (b << 3) /***/ ^ c ^ (c << 1) ^ (c << 3) ^ d ^ (d << 2) ^ (d << 3); astate[i + 1] = Multiply(y); z = a ^ (a << 2) ^ (a << 3) ^ b ^ (b << 3) /***/ ^ (c << 1) ^ (c << 2) ^ (c << 3) ^ d ^ (d << 1) ^ (d << 3); astate[i + 2] = Multiply(z); t = a ^ (a << 1) ^ (a << 3) ^ b ^ (b << 2) ^ (b << 3) /***/ ^ c ^ (c << 3) ^ (d << 1) ^ (d << 2) ^ (d << 3); astate[i + 3] = Multiply(t); } } static void aes_encrypt_1(struct tls_aes *aes, unsigned astate[16]) { unsigned rounds = aes->rounds; const uint32_t *RoundKey = aes->key; for (;;) { AddRoundKey(astate, RoundKey); RoundKey += 4; SubBytes(astate); ShiftRows(astate); if (--rounds == 0) break; MixColumns(astate); } AddRoundKey(astate, RoundKey); } void FAST_FUNC aes_setkey(struct tls_aes *aes, const void *key, unsigned key_len) { aes->rounds = KeyExpansion(aes->key, key, key_len); } void FAST_FUNC aes_encrypt_one_block(struct tls_aes *aes, const void *data, void *dst) { unsigned astate[16]; unsigned i; const uint8_t *pt = data; uint8_t *ct = dst; for (i = 0; i < 16; i++) astate[i] = pt[i]; aes_encrypt_1(aes, astate); for (i = 0; i < 16; i++) ct[i] = astate[i]; } void FAST_FUNC aes_cbc_encrypt(struct tls_aes *aes, void *iv, const void *data, size_t len, void *dst) { uint8_t iv2[16]; const uint8_t *pt = data; uint8_t *ct = dst; memcpy(iv2, iv, 16); while (len > 0) { { /* almost aes_encrypt_one_block(rounds, RoundKey, pt, ct); * but xor'ing of IV with plaintext[] is combined * with plaintext[] -> astate[] */ int i; unsigned astate[16]; for (i = 0; i < 16; i++) astate[i] = pt[i] ^ iv2[i]; aes_encrypt_1(aes, astate); for (i = 0; i < 16; i++) iv2[i] = ct[i] = astate[i]; } ct += 16; pt += 16; len -= 16; } } static void aes_decrypt_1(struct tls_aes *aes, unsigned astate[16]) { unsigned rounds = aes->rounds; const uint32_t *RoundKey = aes->key; RoundKey += rounds * 4; AddRoundKey(astate, RoundKey); for (;;) { InvShiftRows(astate); InvSubBytes(astate); RoundKey -= 4; AddRoundKey(astate, RoundKey); if (--rounds == 0) break; InvMixColumns(astate); } } #if 0 //UNUSED static void aes_decrypt_one_block(struct tls_aes *aes, const void *data, void *dst) { unsigned rounds = aes->rounds; const uint32_t *RoundKey = aes->key; unsigned astate[16]; unsigned i; const uint8_t *ct = data; uint8_t *pt = dst; for (i = 0; i < 16; i++) astate[i] = ct[i]; aes_decrypt_1(aes, astate); for (i = 0; i < 16; i++) pt[i] = astate[i]; } #endif void FAST_FUNC aes_cbc_decrypt(struct tls_aes *aes, void *iv, const void *data, size_t len, void *dst) { uint8_t iv2[16]; uint8_t iv3[16]; uint8_t *ivbuf; uint8_t *ivnext; const uint8_t *ct = data; uint8_t *pt = dst; ivbuf = memcpy(iv2, iv, 16); while (len) { ivnext = (ivbuf==iv2) ? iv3 : iv2; { /* almost aes_decrypt_one_block(rounds, RoundKey, ct, pt) * but xor'ing of ivbuf is combined with astate[] -> plaintext[] */ int i; unsigned astate[16]; for (i = 0; i < 16; i++) ivnext[i] = astate[i] = ct[i]; aes_decrypt_1(aes, astate); for (i = 0; i < 16; i++) pt[i] = astate[i] ^ ivbuf[i]; } ivbuf = ivnext; ct += 16; pt += 16; len -= 16; } }