aboutsummaryrefslogtreecommitdiff
path: root/networking/ntpd.c
blob: 0b60d003b619537d9028fa77ebc7fc984430be20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
/*
 * NTP client/server, based on OpenNTPD 3.9p1
 *
 * Busybox port author: Adam Tkac (C) 2009 <vonsch@gmail.com>
 *
 * OpenNTPd 3.9p1 copyright holders:
 *   Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org>
 *   Copyright (c) 2004 Alexander Guy <alexander.guy@andern.org>
 *
 * OpenNTPd code is licensed under ISC-style licence:
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
 * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 ***********************************************************************
 *
 * Parts of OpenNTPD clock syncronization code is replaced by
 * code which is based on ntp-4.2.6, which carries the following
 * copyright notice:
 *
 * Copyright (c) University of Delaware 1992-2009
 *
 * Permission to use, copy, modify, and distribute this software and
 * its documentation for any purpose with or without fee is hereby
 * granted, provided that the above copyright notice appears in all
 * copies and that both the copyright notice and this permission
 * notice appear in supporting documentation, and that the name
 * University of Delaware not be used in advertising or publicity
 * pertaining to distribution of the software without specific,
 * written prior permission. The University of Delaware makes no
 * representations about the suitability this software for any
 * purpose. It is provided "as is" without express or implied warranty.
 ***********************************************************************
 */
//config:config NTPD
//config:	bool "ntpd (17 kb)"
//config:	default y
//config:	select PLATFORM_LINUX
//config:	help
//config:	The NTP client/server daemon.
//config:
//config:config FEATURE_NTPD_SERVER
//config:	bool "Make ntpd usable as a NTP server"
//config:	default y
//config:	depends on NTPD
//config:	help
//config:	Make ntpd usable as a NTP server. If you disable this option
//config:	ntpd will be usable only as a NTP client.
//config:
//config:config FEATURE_NTPD_CONF
//config:	bool "Make ntpd understand /etc/ntp.conf"
//config:	default y
//config:	depends on NTPD
//config:	help
//config:	Make ntpd look in /etc/ntp.conf for peers. Only "server address"
//config:	is supported.

//applet:IF_NTPD(APPLET(ntpd, BB_DIR_USR_SBIN, BB_SUID_DROP))

//kbuild:lib-$(CONFIG_NTPD) += ntpd.o

//usage:#define ntpd_trivial_usage
//usage:	"[-dnqNw"IF_FEATURE_NTPD_SERVER("l -I IFACE")"] [-S PROG] [-p PEER]..."
//usage:#define ntpd_full_usage "\n\n"
//usage:       "NTP client/server\n"
//usage:     "\n	-d	Verbose (may be repeated)"
//usage:     "\n	-n	Do not daemonize"
//usage:     "\n	-q	Quit after clock is set"
//usage:     "\n	-N	Run at high priority"
//usage:     "\n	-w	Do not set time (only query peers), implies -n"
//usage:     "\n	-S PROG	Run PROG after stepping time, stratum change, and every 11 mins"
//usage:     "\n	-p PEER	Obtain time from PEER (may be repeated)"
//usage:	IF_FEATURE_NTPD_CONF(
//usage:     "\n		If -p is not given, 'server HOST' lines"
//usage:     "\n		from /etc/ntp.conf are used"
//usage:	)
//usage:	IF_FEATURE_NTPD_SERVER(
//usage:     "\n	-l	Also run as server on port 123"
//usage:     "\n	-I IFACE Bind server to IFACE, implies -l"
//usage:	)

// -l and -p options are not compatible with "standard" ntpd:
// it has them as "-l logfile" and "-p pidfile".
// -S and -w are not compat either, "standard" ntpd has no such opts.

#include "libbb.h"
#include <math.h>
#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
#include <sys/resource.h> /* setpriority */
#include <sys/timex.h>
#ifndef IPTOS_LOWDELAY
# define IPTOS_LOWDELAY 0x10
#endif


/* Verbosity control (max level of -dddd options accepted).
 * max 6 is very talkative (and bloated). 3 is non-bloated,
 * production level setting.
 */
#define MAX_VERBOSE     3


/* High-level description of the algorithm:
 *
 * We start running with very small poll_exp, BURSTPOLL,
 * in order to quickly accumulate INITIAL_SAMPLES datapoints
 * for each peer. Then, time is stepped if the offset is larger
 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
 * poll_exp to MINPOLL and enter frequency measurement step:
 * we collect new datapoints but ignore them for WATCH_THRESHOLD
 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
 * offset and estimate frequency drift.
 *
 * (frequency measurement step seems to not be strictly needed,
 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
 * define set to 0)
 *
 * After this, we enter "steady state": we collect a datapoint,
 * we select the best peer, if this datapoint is not a new one
 * (IOW: if this datapoint isn't for selected peer), sleep
 * and collect another one; otherwise, use its offset to update
 * frequency drift, if offset is somewhat large, reduce poll_exp,
 * otherwise increase poll_exp.
 *
 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
 * happen, we assume that something "bad" happened (computer
 * was hibernated, someone set totally wrong date, etc),
 * then the time is stepped, all datapoints are discarded,
 * and we go back to steady state.
 *
 * Made some changes to speed up re-syncing after our clock goes bad
 * (tested with suspending my laptop):
 * - if largish offset (>= STEP_THRESHOLD == 1 sec) is seen
 *   from a peer, schedule next query for this peer soon
 *   without drastically lowering poll interval for everybody.
 *   This makes us collect enough data for step much faster:
 *   e.g. at poll = 10 (1024 secs), step was done within 5 minutes
 *   after first reply which indicated that our clock is 14 seconds off.
 * - on step, do not discard d_dispersion data of the existing datapoints,
 *   do not clear reachable_bits. This prevents discarding first ~8
 *   datapoints after the step.
 */

#define INITIAL_SAMPLES    4    /* how many samples do we want for init */
#define BAD_DELAY_GROWTH   4    /* drop packet if its delay grew by more than this */

#define RETRY_INTERVAL    32    /* on send/recv error, retry in N secs (need to be power of 2) */
#define NOREPLY_INTERVAL 512    /* sent, but got no reply: cap next query by this many seconds */
#define RESPONSE_INTERVAL 16    /* wait for reply up to N secs */
#define HOSTNAME_INTERVAL  4    /* hostname lookup failed. Wait N * peer->dns_errors secs for next try */
#define DNS_ERRORS_CAP  0x3f    /* peer->dns_errors is in [0..63] */

/* Step threshold (sec). std ntpd uses 0.128.
 */
#define STEP_THRESHOLD     1
/* Slew threshold (sec): adjtimex() won't accept offsets larger than this.
 * Using exact power of 2 (1/8) results in smaller code
 */
#define SLEW_THRESHOLD 0.125
/* Stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
#define WATCH_THRESHOLD  128
/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
//UNUSED: #define PANIC_THRESHOLD 1000    /* panic threshold (sec) */

/*
 * If we got |offset| > BIGOFF from a peer, cap next query interval
 * for this peer by this many seconds:
 */
#define BIGOFF          STEP_THRESHOLD
#define BIGOFF_INTERVAL (1 << 7) /* 128 s */

#define FREQ_TOLERANCE  0.000015 /* frequency tolerance (15 PPM) */
#define BURSTPOLL       0       /* initial poll */
#define MINPOLL         5       /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
/*
 * If offset > discipline_jitter * POLLADJ_GATE, and poll interval is > 2^BIGPOLL,
 * then it is decreased _at once_. (If <= 2^BIGPOLL, it will be decreased _eventually_).
 */
#define BIGPOLL         9       /* 2^9 sec ~= 8.5 min */
#define MAXPOLL         12      /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
/*
 * Actively lower poll when we see such big offsets.
 * With SLEW_THRESHOLD = 0.125, it means we try to sync more aggressively
 * if offset increases over ~0.04 sec
 */
//#define POLLDOWN_OFFSET (SLEW_THRESHOLD / 3)
#define MINDISP         0.01    /* minimum dispersion (sec) */
#define MAXDISP         16      /* maximum dispersion (sec) */
#define MAXSTRAT        16      /* maximum stratum (infinity metric) */
#define MAXDIST         1       /* distance threshold (sec) */
#define MIN_SELECTED    1       /* minimum intersection survivors */
#define MIN_CLUSTERED   3       /* minimum cluster survivors */

#define MAXDRIFT        0.000500 /* frequency drift we can correct (500 PPM) */

/* Poll-adjust threshold.
 * When we see that offset is small enough compared to discipline jitter,
 * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
 * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
 * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
 */
#define POLLADJ_LIMIT   40
/* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
 * poll interval (we think we can't improve timekeeping
 * by staying at smaller poll).
 */
#define POLLADJ_GATE    4
#define TIMECONST_HACK_GATE 2
/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
#define ALLAN           512
/* PLL loop gain */
#define PLL             65536
/* FLL loop gain [why it depends on MAXPOLL??] */
#define FLL             (MAXPOLL + 1)
/* Parameter averaging constant */
#define AVG             4


enum {
	NTP_VERSION     = 4,
	NTP_MAXSTRATUM  = 15,

	NTP_DIGESTSIZE     = 16,
	NTP_MSGSIZE_NOAUTH = 48,
	NTP_MSGSIZE        = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),

	/* Status Masks */
	MODE_MASK       = (7 << 0),
	VERSION_MASK    = (7 << 3),
	VERSION_SHIFT   = 3,
	LI_MASK         = (3 << 6),

	/* Leap Second Codes (high order two bits of m_status) */
	LI_NOWARNING    = (0 << 6),    /* no warning */
	LI_PLUSSEC      = (1 << 6),    /* add a second (61 seconds) */
	LI_MINUSSEC     = (2 << 6),    /* minus a second (59 seconds) */
	LI_ALARM        = (3 << 6),    /* alarm condition */

	/* Mode values */
	MODE_RES0       = 0,    /* reserved */
	MODE_SYM_ACT    = 1,    /* symmetric active */
	MODE_SYM_PAS    = 2,    /* symmetric passive */
	MODE_CLIENT     = 3,    /* client */
	MODE_SERVER     = 4,    /* server */
	MODE_BROADCAST  = 5,    /* broadcast */
	MODE_RES1       = 6,    /* reserved for NTP control message */
	MODE_RES2       = 7,    /* reserved for private use */
};

//TODO: better base selection
#define OFFSET_1900_1970 2208988800UL  /* 1970 - 1900 in seconds */

#define NUM_DATAPOINTS  8

typedef struct {
	uint32_t int_partl;
	uint32_t fractionl;
} l_fixedpt_t;

typedef struct {
	uint16_t int_parts;
	uint16_t fractions;
} s_fixedpt_t;

typedef struct {
	uint8_t     m_status;     /* status of local clock and leap info */
	uint8_t     m_stratum;
	uint8_t     m_ppoll;      /* poll value */
	int8_t      m_precision_exp;
	s_fixedpt_t m_rootdelay;
	s_fixedpt_t m_rootdisp;
	uint32_t    m_refid;
	l_fixedpt_t m_reftime;
	l_fixedpt_t m_orgtime;
	l_fixedpt_t m_rectime;
	l_fixedpt_t m_xmttime;
	uint32_t    m_keyid;
	uint8_t     m_digest[NTP_DIGESTSIZE];
} msg_t;

typedef struct {
	double d_offset;
	double d_recv_time;
	double d_dispersion;
} datapoint_t;

typedef struct {
	len_and_sockaddr *p_lsa;
	char             *p_dotted;
	int              p_fd;
	int              datapoint_idx;
	uint32_t         lastpkt_refid;
	uint8_t          lastpkt_status;
	uint8_t          lastpkt_stratum;
	uint8_t          reachable_bits;
	uint8_t          dns_errors;
	/* when to send new query (if p_fd == -1)
	 * or when receive times out (if p_fd >= 0): */
	double           next_action_time;
	double           p_xmttime;
	double           p_raw_delay;
	/* p_raw_delay is set even by "high delay" packets */
	/* lastpkt_delay isn't */
	double           lastpkt_recv_time;
	double           lastpkt_delay;
	double           lastpkt_rootdelay;
	double           lastpkt_rootdisp;
	/* produced by filter algorithm: */
	double           filter_offset;
	double           filter_dispersion;
	double           filter_jitter;
	datapoint_t      filter_datapoint[NUM_DATAPOINTS];
	/* last sent packet: */
	msg_t            p_xmt_msg;
	char             p_hostname[1];
} peer_t;


#define USING_KERNEL_PLL_LOOP          1
#define USING_INITIAL_FREQ_ESTIMATION  0

enum {
	OPT_n = (1 << 0),
	OPT_q = (1 << 1),
	OPT_N = (1 << 2),
	OPT_x = (1 << 3),
	/* Insert new options above this line. */
	/* Non-compat options: */
	OPT_w = (1 << 4),
	OPT_p = (1 << 5),
	OPT_S = (1 << 6),
	OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
	OPT_I = (1 << 8) * ENABLE_FEATURE_NTPD_SERVER,
	/* We hijack some bits for other purposes */
	OPT_qq = (1 << 31),
};

struct globals {
	double   cur_time;
	/* total round trip delay to currently selected reference clock */
	double   rootdelay;
	/* reference timestamp: time when the system clock was last set or corrected */
	double   reftime;
	/* total dispersion to currently selected reference clock */
	double   rootdisp;

	double   last_script_run;
	char     *script_name;
	llist_t  *ntp_peers;
#if ENABLE_FEATURE_NTPD_SERVER
	int      listen_fd;
	char     *if_name;
# define G_listen_fd (G.listen_fd)
#else
# define G_listen_fd (-1)
#endif
	unsigned verbose;
	unsigned peer_cnt;
	/* refid: 32-bit code identifying the particular server or reference clock
	 * in stratum 0 packets this is a four-character ASCII string,
	 * called the kiss code, used for debugging and monitoring
	 * in stratum 1 packets this is a four-character ASCII string
	 * assigned to the reference clock by IANA. Example: "GPS "
	 * in stratum 2+ packets, it's IPv4 address or 4 first bytes
	 * of MD5 hash of IPv6
	 */
	uint32_t refid;
	uint8_t  ntp_status;
	/* precision is defined as the larger of the resolution and time to
	 * read the clock, in log2 units.  For instance, the precision of a
	 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
	 * system clock hardware representation is to the nanosecond.
	 *
	 * Delays, jitters of various kinds are clamped down to precision.
	 *
	 * If precision_sec is too large, discipline_jitter gets clamped to it
	 * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
	 * interval grows even though we really can benefit from staying at
	 * smaller one, collecting non-lagged datapoits and correcting offset.
	 * (Lagged datapoits exist when poll_exp is large but we still have
	 * systematic offset error - the time distance between datapoints
	 * is significant and older datapoints have smaller offsets.
	 * This makes our offset estimation a bit smaller than reality)
	 * Due to this effect, setting G_precision_sec close to
	 * STEP_THRESHOLD isn't such a good idea - offsets may grow
	 * too big and we will step. I observed it with -6.
	 *
	 * OTOH, setting precision_sec far too small would result in futile
	 * attempts to synchronize to an unachievable precision.
	 *
	 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
	 * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
	 * -9 is 1/512 ~= 0.001953 (let's try this for some time)
	 */
#define G_precision_exp  -9
	/*
	 * G_precision_exp is used only for construction outgoing packets.
	 * It's ok to set G_precision_sec to a slightly different value
	 * (One which is "nicer looking" in logs).
	 * Exact value would be (1.0 / (1 << (- G_precision_exp))):
	 */
#define G_precision_sec  0.002
	uint8_t  stratum;

#define STATE_NSET      0       /* initial state, "nothing is set" */
//#define STATE_FSET    1       /* frequency set from file */
//#define STATE_SPIK    2       /* spike detected */
//#define STATE_FREQ    3       /* initial frequency */
#define STATE_SYNC      4       /* clock synchronized (normal operation) */
	uint8_t  discipline_state;      // doc calls it c.state
	uint8_t  poll_exp;              // s.poll
	int      polladj_count;         // c.count
	long     kernel_freq_drift;
	peer_t   *last_update_peer;
	double   last_update_offset;    // c.last
	double   last_update_recv_time; // s.t
	double   discipline_jitter;     // c.jitter
	/* Since we only compare it with ints, can simplify code
	 * by not making this variable floating point:
	 */
	unsigned offset_to_jitter_ratio;
	//double   cluster_offset;        // s.offset
	//double   cluster_jitter;        // s.jitter
#if !USING_KERNEL_PLL_LOOP
	double   discipline_freq_drift; // c.freq
	/* Maybe conditionally calculate wander? it's used only for logging */
	double   discipline_wander;     // c.wander
#endif
};
#define G (*ptr_to_globals)


#define VERB1 if (MAX_VERBOSE && G.verbose)
#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
#define VERB6 if (MAX_VERBOSE >= 6 && G.verbose >= 6)


static double LOG2D(int a)
{
	if (a < 0)
		return 1.0 / (1UL << -a);
	return 1UL << a;
}
static ALWAYS_INLINE double SQUARE(double x)
{
	return x * x;
}
static ALWAYS_INLINE double MAXD(double a, double b)
{
	if (a > b)
		return a;
	return b;
}
static ALWAYS_INLINE double MIND(double a, double b)
{
	if (a < b)
		return a;
	return b;
}
static NOINLINE double my_SQRT(double X)
{
	union {
		float   f;
		int32_t i;
	} v;
	double invsqrt;
	double Xhalf = X * 0.5;

	/* Fast and good approximation to 1/sqrt(X), black magic */
	v.f = X;
	/*v.i = 0x5f3759df - (v.i >> 1);*/
	v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
	invsqrt = v.f; /* better than 0.2% accuracy */

	/* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
	 * f(x) = 1/(x*x) - X  (f==0 when x = 1/sqrt(X))
	 * f'(x) = -2/(x*x*x)
	 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
	 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
	 */
	invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
	/* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
	/* With 4 iterations, more than half results will be exact,
	 * at 6th iterations result stabilizes with about 72% results exact.
	 * We are well satisfied with 0.05% accuracy.
	 */

	return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
}
static ALWAYS_INLINE double SQRT(double X)
{
	/* If this arch doesn't use IEEE 754 floats, fall back to using libm */
	if (sizeof(float) != 4)
		return sqrt(X);

	/* This avoids needing libm, saves about 0.5k on x86-32 */
	return my_SQRT(X);
}

static double
gettime1900d(void)
{
	struct timeval tv;
	gettimeofday(&tv, NULL); /* never fails */
	G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
	return G.cur_time;
}

static void
d_to_tv(double d, struct timeval *tv)
{
	tv->tv_sec = (long)d;
	tv->tv_usec = (d - tv->tv_sec) * 1000000;
}

static double
lfp_to_d(l_fixedpt_t lfp)
{
	double ret;
	lfp.int_partl = ntohl(lfp.int_partl);
	lfp.fractionl = ntohl(lfp.fractionl);
	ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
	return ret;
}
static double
sfp_to_d(s_fixedpt_t sfp)
{
	double ret;
	sfp.int_parts = ntohs(sfp.int_parts);
	sfp.fractions = ntohs(sfp.fractions);
	ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
	return ret;
}
#if ENABLE_FEATURE_NTPD_SERVER
static l_fixedpt_t
d_to_lfp(double d)
{
	l_fixedpt_t lfp;
	lfp.int_partl = (uint32_t)d;
	lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
	lfp.int_partl = htonl(lfp.int_partl);
	lfp.fractionl = htonl(lfp.fractionl);
	return lfp;
}
static s_fixedpt_t
d_to_sfp(double d)
{
	s_fixedpt_t sfp;
	sfp.int_parts = (uint16_t)d;
	sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
	sfp.int_parts = htons(sfp.int_parts);
	sfp.fractions = htons(sfp.fractions);
	return sfp;
}
#endif

static double
dispersion(const datapoint_t *dp)
{
	return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
}

static double
root_distance(peer_t *p)
{
	/* The root synchronization distance is the maximum error due to
	 * all causes of the local clock relative to the primary server.
	 * It is defined as half the total delay plus total dispersion
	 * plus peer jitter.
	 */
	return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
		+ p->lastpkt_rootdisp
		+ p->filter_dispersion
		+ FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
		+ p->filter_jitter;
}

static void
set_next(peer_t *p, unsigned t)
{
	p->next_action_time = G.cur_time + t;
}

/*
 * Peer clock filter and its helpers
 */
static void
filter_datapoints(peer_t *p)
{
	int i, idx;
	double sum, wavg;
	datapoint_t *fdp;

#if 0
/* Simulations have shown that use of *averaged* offset for p->filter_offset
 * is in fact worse than simply using last received one: with large poll intervals
 * (>= 2048) averaging code uses offset values which are outdated by hours,
 * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
 */
	int got_newest;
	double minoff, maxoff, w;
	double x = x; /* for compiler */
	double oldest_off = oldest_off;
	double oldest_age = oldest_age;
	double newest_off = newest_off;
	double newest_age = newest_age;

	fdp = p->filter_datapoint;

	minoff = maxoff = fdp[0].d_offset;
	for (i = 1; i < NUM_DATAPOINTS; i++) {
		if (minoff > fdp[i].d_offset)
			minoff = fdp[i].d_offset;
		if (maxoff < fdp[i].d_offset)
			maxoff = fdp[i].d_offset;
	}

	idx = p->datapoint_idx; /* most recent datapoint's index */
	/* Average offset:
	 * Drop two outliers and take weighted average of the rest:
	 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
	 * we use older6/32, not older6/64 since sum of weights should be 1:
	 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
	 */
	wavg = 0;
	w = 0.5;
	/*                     n-1
	 *                     ---    dispersion(i)
	 * filter_dispersion =  \     -------------
	 *                      /       (i+1)
	 *                     ---     2
	 *                     i=0
	 */
	got_newest = 0;
	sum = 0;
	for (i = 0; i < NUM_DATAPOINTS; i++) {
		VERB5 {
			bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
				i,
				fdp[idx].d_offset,
				fdp[idx].d_dispersion, dispersion(&fdp[idx]),
				G.cur_time - fdp[idx].d_recv_time,
				(minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
					? " (outlier by offset)" : ""
			);
		}

		sum += dispersion(&fdp[idx]) / (2 << i);

		if (minoff == fdp[idx].d_offset) {
			minoff -= 1; /* so that we don't match it ever again */
		} else
		if (maxoff == fdp[idx].d_offset) {
			maxoff += 1;
		} else {
			oldest_off = fdp[idx].d_offset;
			oldest_age = G.cur_time - fdp[idx].d_recv_time;
			if (!got_newest) {
				got_newest = 1;
				newest_off = oldest_off;
				newest_age = oldest_age;
			}
			x = oldest_off * w;
			wavg += x;
			w /= 2;
		}

		idx = (idx - 1) & (NUM_DATAPOINTS - 1);
	}
	p->filter_dispersion = sum;
	wavg += x; /* add another older6/64 to form older6/32 */
	/* Fix systematic underestimation with large poll intervals.
	 * Imagine that we still have a bit of uncorrected drift,
	 * and poll interval is big (say, 100 sec). Offsets form a progression:
	 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
	 * The algorithm above drops 0.0 and 0.7 as outliers,
	 * and then we have this estimation, ~25% off from 0.7:
	 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
	 */
	x = oldest_age - newest_age;
	if (x != 0) {
		x = newest_age / x; /* in above example, 100 / (600 - 100) */
		if (x < 1) { /* paranoia check */
			x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
			wavg += x;
		}
	}
	p->filter_offset = wavg;

#else

	fdp = p->filter_datapoint;
	idx = p->datapoint_idx; /* most recent datapoint's index */

	/* filter_offset: simply use the most recent value */
	p->filter_offset = fdp[idx].d_offset;

	/*                     n-1
	 *                     ---    dispersion(i)
	 * filter_dispersion =  \     -------------
	 *                      /       (i+1)
	 *                     ---     2
	 *                     i=0
	 */
	wavg = 0;
	sum = 0;
	for (i = 0; i < NUM_DATAPOINTS; i++) {
		sum += dispersion(&fdp[idx]) / (2 << i);
		wavg += fdp[idx].d_offset;
		idx = (idx - 1) & (NUM_DATAPOINTS - 1);
	}
	wavg /= NUM_DATAPOINTS;
	p->filter_dispersion = sum;
#endif

	/*                  +-----                 -----+ ^ 1/2
	 *                  |       n-1                 |
	 *                  |       ---                 |
	 *                  |  1    \                2  |
	 * filter_jitter =  | --- * /  (avg-offset_j)   |
	 *                  |  n    ---                 |
	 *                  |       j=0                 |
	 *                  +-----                 -----+
	 * where n is the number of valid datapoints in the filter (n > 1);
	 * if filter_jitter < precision then filter_jitter = precision
	 */
	sum = 0;
	for (i = 0; i < NUM_DATAPOINTS; i++) {
		sum += SQUARE(wavg - fdp[i].d_offset);
	}
	sum = SQRT(sum / NUM_DATAPOINTS);
	p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;

	VERB4 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
			p->filter_offset,
			p->filter_dispersion,
			p->filter_jitter);
}

static void
reset_peer_stats(peer_t *p, double offset)
{
	int i;
	bool small_ofs = fabs(offset) < STEP_THRESHOLD;

	/* Used to set p->filter_datapoint[i].d_dispersion = MAXDISP
	 * and clear reachable bits, but this proved to be too aggressive:
	 * after step (tested with suspending laptop for ~30 secs),
	 * this caused all previous data to be considered invalid,
	 * making us needing to collect full ~8 datapoints per peer
	 * after step in order to start trusting them.
	 * In turn, this was making poll interval decrease even after
	 * step was done. (Poll interval decreases already before step
	 * in this scenario, because we see large offsets and end up with
	 * no good peer to select).
	 */

	for (i = 0; i < NUM_DATAPOINTS; i++) {
		if (small_ofs) {
			p->filter_datapoint[i].d_recv_time += offset;
			if (p->filter_datapoint[i].d_offset != 0) {
				p->filter_datapoint[i].d_offset -= offset;
				//bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
				//	i,
				//	p->filter_datapoint[i].d_offset + offset,
				//	p->filter_datapoint[i].d_offset);
			}
		} else {
			p->filter_datapoint[i].d_recv_time  = G.cur_time;
			p->filter_datapoint[i].d_offset     = 0;
			/*p->filter_datapoint[i].d_dispersion = MAXDISP;*/
		}
	}
	if (small_ofs) {
		p->lastpkt_recv_time += offset;
	} else {
		/*p->reachable_bits = 0;*/
		p->lastpkt_recv_time = G.cur_time;
	}
	filter_datapoints(p); /* recalc p->filter_xxx */
	VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
}

static len_and_sockaddr*
resolve_peer_hostname(peer_t *p)
{
	len_and_sockaddr *lsa = host2sockaddr(p->p_hostname, 123);
	if (lsa) {
		free(p->p_lsa);
		free(p->p_dotted);
		p->p_lsa = lsa;
		p->p_dotted = xmalloc_sockaddr2dotted_noport(&lsa->u.sa);
		VERB1 if (strcmp(p->p_hostname, p->p_dotted) != 0)
			bb_error_msg("'%s' is %s", p->p_hostname, p->p_dotted);
		p->dns_errors = 0;
		return lsa;
	}
	p->dns_errors = ((p->dns_errors << 1) | 1) & DNS_ERRORS_CAP;
	return lsa;
}

static void
add_peers(const char *s)
{
	llist_t *item;
	peer_t *p;

	p = xzalloc(sizeof(*p) + strlen(s));
	strcpy(p->p_hostname, s);
	p->p_fd = -1;
	p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
	p->next_action_time = G.cur_time; /* = set_next(p, 0); */
	reset_peer_stats(p, STEP_THRESHOLD);

	/* Names like N.<country2chars>.pool.ntp.org are randomly resolved
	 * to a pool of machines. Sometimes different N's resolve to the same IP.
	 * It is not useful to have two peers with same IP. We skip duplicates.
	 */
	if (resolve_peer_hostname(p)) {
		for (item = G.ntp_peers; item != NULL; item = item->link) {
			peer_t *pp = (peer_t *) item->data;
			if (pp->p_dotted && strcmp(p->p_dotted, pp->p_dotted) == 0) {
				bb_error_msg("duplicate peer %s (%s)", s, p->p_dotted);
				free(p->p_lsa);
				free(p->p_dotted);
				free(p);
				return;
			}
		}
	}

	llist_add_to(&G.ntp_peers, p);
	G.peer_cnt++;
}

static int
do_sendto(int fd,
		const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
		msg_t *msg, ssize_t len)
{
	ssize_t ret;

	errno = 0;
	if (!from) {
		ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
	} else {
		ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
	}
	if (ret != len) {
		bb_perror_msg("send failed");
		return -1;
	}
	return 0;
}

static void
send_query_to_peer(peer_t *p)
{
	if (!p->p_lsa)
		return;

	/* Why do we need to bind()?
	 * See what happens when we don't bind:
	 *
	 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
	 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
	 * gettimeofday({1259071266, 327885}, NULL) = 0
	 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
	 * ^^^ we sent it from some source port picked by kernel.
	 * time(NULL)              = 1259071266
	 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
	 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
	 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
	 * ^^^ this recv will receive packets to any local port!
	 *
	 * Uncomment this and use strace to see it in action:
	 */
#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */

	if (p->p_fd == -1) {
		int fd, family;
		len_and_sockaddr *local_lsa;

		family = p->p_lsa->u.sa.sa_family;
		p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
		/* local_lsa has "null" address and port 0 now.
		 * bind() ensures we have a *particular port* selected by kernel
		 * and remembered in p->p_fd, thus later recv(p->p_fd)
		 * receives only packets sent to this port.
		 */
		PROBE_LOCAL_ADDR
		xbind(fd, &local_lsa->u.sa, local_lsa->len);
		PROBE_LOCAL_ADDR
#if ENABLE_FEATURE_IPV6
		if (family == AF_INET)
#endif
			setsockopt_int(fd, IPPROTO_IP, IP_TOS, IPTOS_LOWDELAY);
		free(local_lsa);
	}

	/* Emit message _before_ attempted send. Think of a very short
	 * roundtrip networks: we need to go back to recv loop ASAP,
	 * to reduce delay. Printing messages after send works against that.
	 */
	VERB1 bb_error_msg("sending query to %s", p->p_dotted);

	/*
	 * Send out a random 64-bit number as our transmit time.  The NTP
	 * server will copy said number into the originate field on the
	 * response that it sends us.  This is totally legal per the SNTP spec.
	 *
	 * The impact of this is two fold: we no longer send out the current
	 * system time for the world to see (which may aid an attacker), and
	 * it gives us a (not very secure) way of knowing that we're not
	 * getting spoofed by an attacker that can't capture our traffic
	 * but can spoof packets from the NTP server we're communicating with.
	 *
	 * Save the real transmit timestamp locally.
	 */
	p->p_xmt_msg.m_xmttime.int_partl = rand();
	p->p_xmt_msg.m_xmttime.fractionl = rand();
	p->p_xmttime = gettime1900d();

	/* Were doing it only if sendto worked, but
	 * loss of sync detection needs reachable_bits updated
	 * even if sending fails *locally*:
	 * "network is unreachable" because cable was pulled?
	 * We still need to declare "unsync" if this condition persists.
	 */
	p->reachable_bits <<= 1;

	if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
			&p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
	) {
		close(p->p_fd);
		p->p_fd = -1;
		/*
		 * We know that we sent nothing.
		 * We can retry *soon* without fearing
		 * that we are flooding the peer.
		 */
		set_next(p, RETRY_INTERVAL);
		return;
	}

	set_next(p, RESPONSE_INTERVAL);
}


/* Note that there is no provision to prevent several run_scripts
 * to be started in quick succession. In fact, it happens rather often
 * if initial syncronization results in a step.
 * You will see "step" and then "stratum" script runs, sometimes
 * as close as only 0.002 seconds apart.
 * Script should be ready to deal with this.
 */
static void run_script(const char *action, double offset)
{
	char *argv[3];
	char *env1, *env2, *env3, *env4;

	G.last_script_run = G.cur_time;

	if (!G.script_name)
		return;

	argv[0] = (char*) G.script_name;
	argv[1] = (char*) action;
	argv[2] = NULL;

	VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);

	env1 = xasprintf("%s=%u", "stratum", G.stratum);
	putenv(env1);
	env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
	putenv(env2);
	env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
	putenv(env3);
	env4 = xasprintf("%s=%f", "offset", offset);
	putenv(env4);
	/* Other items of potential interest: selected peer,
	 * rootdelay, reftime, rootdisp, refid, ntp_status,
	 * last_update_offset, last_update_recv_time, discipline_jitter,
	 * how many peers have reachable_bits = 0?
	 */

	/* Don't want to wait: it may run hwclock --systohc, and that
	 * may take some time (seconds): */
	/*spawn_and_wait(argv);*/
	spawn(argv);

	unsetenv("stratum");
	unsetenv("freq_drift_ppm");
	unsetenv("poll_interval");
	unsetenv("offset");
	free(env1);
	free(env2);
	free(env3);
	free(env4);
}

static NOINLINE void
step_time(double offset)
{
	llist_t *item;
	double dtime;
	struct timeval tvc, tvn;
	char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
	time_t tval;

	gettimeofday(&tvc, NULL); /* never fails */
	dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
	d_to_tv(dtime, &tvn);
	if (settimeofday(&tvn, NULL) == -1)
		bb_perror_msg_and_die("settimeofday");

	VERB2 {
		tval = tvc.tv_sec;
		strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
		bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
	}
	tval = tvn.tv_sec;
	strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
	bb_error_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);

	/* Correct various fields which contain time-relative values: */

	/* Globals: */
	G.cur_time += offset;
	G.last_update_recv_time += offset;
	G.last_script_run += offset;

	/* p->lastpkt_recv_time, p->next_action_time and such: */
	for (item = G.ntp_peers; item != NULL; item = item->link) {
		peer_t *pp = (peer_t *) item->data;
		reset_peer_stats(pp, offset);
		//bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
		//	offset, pp->next_action_time, pp->next_action_time + offset);
		pp->next_action_time += offset;
		if (pp->p_fd >= 0) {
			/* We wait for reply from this peer too.
			 * But due to step we are doing, reply's data is no longer
			 * useful (in fact, it'll be bogus). Stop waiting for it.
			 */
			close(pp->p_fd);
			pp->p_fd = -1;
			set_next(pp, RETRY_INTERVAL);
		}
	}
}

static void clamp_pollexp_and_set_MAXSTRAT(void)
{
	if (G.poll_exp < MINPOLL)
		G.poll_exp = MINPOLL;
	if (G.poll_exp > BIGPOLL)
		G.poll_exp = BIGPOLL;
	G.polladj_count = 0;
	G.stratum = MAXSTRAT;
}


/*
 * Selection and clustering, and their helpers
 */
typedef struct {
	peer_t *p;
	int    type;
	double edge;
	double opt_rd; /* optimization */
} point_t;
static int
compare_point_edge(const void *aa, const void *bb)
{
	const point_t *a = aa;
	const point_t *b = bb;
	if (a->edge < b->edge) {
		return -1;
	}
	return (a->edge > b->edge);
}
typedef struct {
	peer_t *p;
	double metric;
} survivor_t;
static int
compare_survivor_metric(const void *aa, const void *bb)
{
	const survivor_t *a = aa;
	const survivor_t *b = bb;
	if (a->metric < b->metric) {
		return -1;
	}
	return (a->metric > b->metric);
}
static int
fit(peer_t *p, double rd)
{
	if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
		/* One or zero bits in reachable_bits */
		VERB4 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
		return 0;
	}
#if 0 /* we filter out such packets earlier */
	if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
	 || p->lastpkt_stratum >= MAXSTRAT
	) {
		VERB4 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
		return 0;
	}
#endif
	/* rd is root_distance(p) */
	if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
		VERB4 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
		return 0;
	}
//TODO
//	/* Do we have a loop? */
//	if (p->refid == p->dstaddr || p->refid == s.refid)
//		return 0;
	return 1;
}
static peer_t*
select_and_cluster(void)
{
	peer_t     *p;
	llist_t    *item;
	int        i, j;
	int        size = 3 * G.peer_cnt;
	/* for selection algorithm */
	point_t    point[size];
	unsigned   num_points, num_candidates;
	double     low, high;
	unsigned   num_falsetickers;
	/* for cluster algorithm */
	survivor_t survivor[size];
	unsigned   num_survivors;

	/* Selection */

	num_points = 0;
	item = G.ntp_peers;
	while (item != NULL) {
		double rd, offset;

		p = (peer_t *) item->data;
		rd = root_distance(p);
		offset = p->filter_offset;
		if (!fit(p, rd)) {
			item = item->link;
			continue;
		}

		VERB5 bb_error_msg("interval: [%f %f %f] %s",
				offset - rd,
				offset,
				offset + rd,
				p->p_dotted
		);
		point[num_points].p = p;
		point[num_points].type = -1;
		point[num_points].edge = offset - rd;
		point[num_points].opt_rd = rd;
		num_points++;
		point[num_points].p = p;
		point[num_points].type = 0;
		point[num_points].edge = offset;
		point[num_points].opt_rd = rd;
		num_points++;
		point[num_points].p = p;
		point[num_points].type = 1;
		point[num_points].edge = offset + rd;
		point[num_points].opt_rd = rd;
		num_points++;
		item = item->link;
	}
	num_candidates = num_points / 3;
	if (num_candidates == 0) {
		VERB3 bb_error_msg("no valid datapoints%s", ", no peer selected");
		return NULL;
	}
//TODO: sorting does not seem to be done in reference code
	qsort(point, num_points, sizeof(point[0]), compare_point_edge);

	/* Start with the assumption that there are no falsetickers.
	 * Attempt to find a nonempty intersection interval containing
	 * the midpoints of all truechimers.
	 * If a nonempty interval cannot be found, increase the number
	 * of assumed falsetickers by one and try again.
	 * If a nonempty interval is found and the number of falsetickers
	 * is less than the number of truechimers, a majority has been found
	 * and the midpoint of each truechimer represents
	 * the candidates available to the cluster algorithm.
	 */
	num_falsetickers = 0;
	while (1) {
		int c;
		unsigned num_midpoints = 0;

		low = 1 << 9;
		high = - (1 << 9);
		c = 0;
		for (i = 0; i < num_points; i++) {
			/* We want to do:
			 * if (point[i].type == -1) c++;
			 * if (point[i].type == 1) c--;
			 * and it's simpler to do it this way:
			 */
			c -= point[i].type;
			if (c >= num_candidates - num_falsetickers) {
				/* If it was c++ and it got big enough... */
				low = point[i].edge;
				break;
			}
			if (point[i].type == 0)
				num_midpoints++;
		}
		c = 0;
		for (i = num_points-1; i >= 0; i--) {
			c += point[i].type;
			if (c >= num_candidates - num_falsetickers) {
				high = point[i].edge;
				break;
			}
			if (point[i].type == 0)
				num_midpoints++;
		}
		/* If the number of midpoints is greater than the number
		 * of allowed falsetickers, the intersection contains at
		 * least one truechimer with no midpoint - bad.
		 * Also, interval should be nonempty.
		 */
		if (num_midpoints <= num_falsetickers && low < high)
			break;
		num_falsetickers++;
		if (num_falsetickers * 2 >= num_candidates) {
			VERB3 bb_error_msg("falsetickers:%d, candidates:%d%s",
					num_falsetickers, num_candidates,
					", no peer selected");
			return NULL;
		}
	}
	VERB4 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
			low, high, num_candidates, num_falsetickers);

	/* Clustering */

	/* Construct a list of survivors (p, metric)
	 * from the chime list, where metric is dominated
	 * first by stratum and then by root distance.
	 * All other things being equal, this is the order of preference.
	 */
	num_survivors = 0;
	for (i = 0; i < num_points; i++) {
		if (point[i].edge < low || point[i].edge > high)
			continue;
		p = point[i].p;
		survivor[num_survivors].p = p;
		/* x.opt_rd == root_distance(p); */
		survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
		VERB5 bb_error_msg("survivor[%d] metric:%f peer:%s",
			num_survivors, survivor[num_survivors].metric, p->p_dotted);
		num_survivors++;
	}
	/* There must be at least MIN_SELECTED survivors to satisfy the
	 * correctness assertions. Ordinarily, the Byzantine criteria
	 * require four survivors, but for the demonstration here, one
	 * is acceptable.
	 */
	if (num_survivors < MIN_SELECTED) {
		VERB3 bb_error_msg("survivors:%d%s",
				num_survivors,
				", no peer selected");
		return NULL;
	}

//looks like this is ONLY used by the fact that later we pick survivor[0].
//we can avoid sorting then, just find the minimum once!
	qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);

	/* For each association p in turn, calculate the selection
	 * jitter p->sjitter as the square root of the sum of squares
	 * (p->offset - q->offset) over all q associations. The idea is
	 * to repeatedly discard the survivor with maximum selection
	 * jitter until a termination condition is met.
	 */
	while (1) {
		unsigned max_idx = max_idx;
		double max_selection_jitter = max_selection_jitter;
		double min_jitter = min_jitter;

		if (num_survivors <= MIN_CLUSTERED) {
			VERB4 bb_error_msg("num_survivors %d <= %d, not discarding more",
					num_survivors, MIN_CLUSTERED);
			break;
		}

		/* To make sure a few survivors are left
		 * for the clustering algorithm to chew on,
		 * we stop if the number of survivors
		 * is less than or equal to MIN_CLUSTERED (3).
		 */
		for (i = 0; i < num_survivors; i++) {
			double selection_jitter_sq;

			p = survivor[i].p;
			if (i == 0 || p->filter_jitter < min_jitter)
				min_jitter = p->filter_jitter;

			selection_jitter_sq = 0;
			for (j = 0; j < num_survivors; j++) {
				peer_t *q = survivor[j].p;
				selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
			}
			if (i == 0 || selection_jitter_sq > max_selection_jitter) {
				max_selection_jitter = selection_jitter_sq;
				max_idx = i;
			}
			VERB6 bb_error_msg("survivor %d selection_jitter^2:%f",
					i, selection_jitter_sq);
		}
		max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
		VERB5 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
				max_idx, max_selection_jitter, min_jitter);

		/* If the maximum selection jitter is less than the
		 * minimum peer jitter, then tossing out more survivors
		 * will not lower the minimum peer jitter, so we might
		 * as well stop.
		 */
		if (max_selection_jitter < min_jitter) {
			VERB4 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
					max_selection_jitter, min_jitter, num_survivors);
			break;
		}

		/* Delete survivor[max_idx] from the list
		 * and go around again.
		 */
		VERB6 bb_error_msg("dropping survivor %d", max_idx);
		num_survivors--;
		while (max_idx < num_survivors) {
			survivor[max_idx] = survivor[max_idx + 1];
			max_idx++;
		}
	}

	if (0) {
		/* Combine the offsets of the clustering algorithm survivors
		 * using a weighted average with weight determined by the root
		 * distance. Compute the selection jitter as the weighted RMS
		 * difference between the first survivor and the remaining
		 * survivors. In some cases the inherent clock jitter can be
		 * reduced by not using this algorithm, especially when frequent
		 * clockhopping is involved. bbox: thus we don't do it.
		 */
		double x, y, z, w;
		y = z = w = 0;
		for (i = 0; i < num_survivors; i++) {
			p = survivor[i].p;
			x = root_distance(p);
			y += 1 / x;
			z += p->filter_offset / x;
			w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
		}
		//G.cluster_offset = z / y;
		//G.cluster_jitter = SQRT(w / y);
	}

	/* Pick the best clock. If the old system peer is on the list
	 * and at the same stratum as the first survivor on the list,
	 * then don't do a clock hop. Otherwise, select the first
	 * survivor on the list as the new system peer.
	 */
	p = survivor[0].p;
	if (G.last_update_peer
	 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
	) {
		/* Starting from 1 is ok here */
		for (i = 1; i < num_survivors; i++) {
			if (G.last_update_peer == survivor[i].p) {
				VERB5 bb_error_msg("keeping old synced peer");
				p = G.last_update_peer;
				goto keep_old;
			}
		}
	}
	G.last_update_peer = p;
 keep_old:
	VERB4 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
			p->p_dotted,
			p->filter_offset,
			G.cur_time - p->lastpkt_recv_time
	);
	return p;
}


/*
 * Local clock discipline and its helpers
 */
static void
set_new_values(int disc_state, double offset, double recv_time)
{
	/* Enter new state and set state variables. Note we use the time
	 * of the last clock filter sample, which must be earlier than
	 * the current time.
	 */
	VERB4 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
			disc_state, offset, recv_time);
	G.discipline_state = disc_state;
	G.last_update_offset = offset;
	G.last_update_recv_time = recv_time;
}
/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
static NOINLINE int
update_local_clock(peer_t *p)
{
	int rc;
	struct timex tmx;
	/* Note: can use G.cluster_offset instead: */
	double offset = p->filter_offset;
	double recv_time = p->lastpkt_recv_time;
	double abs_offset;
#if !USING_KERNEL_PLL_LOOP
	double freq_drift;
#endif
#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
	double since_last_update;
#endif
	double etemp, dtemp;

	abs_offset = fabs(offset);

#if 0
	/* If needed, -S script can do it by looking at $offset
	 * env var and killing parent */
	/* If the offset is too large, give up and go home */
	if (abs_offset > PANIC_THRESHOLD) {
		bb_error_msg_and_die("offset %f far too big, exiting", offset);
	}
#endif

	/* If this is an old update, for instance as the result
	 * of a system peer change, avoid it. We never use
	 * an old sample or the same sample twice.
	 */
	if (recv_time <= G.last_update_recv_time) {
		VERB3 bb_error_msg("update from %s: same or older datapoint, not using it",
			p->p_dotted);
		return 0; /* "leave poll interval as is" */
	}

	/* Clock state machine transition function. This is where the
	 * action is and defines how the system reacts to large time
	 * and frequency errors.
	 */
#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
	since_last_update = recv_time - G.reftime;
#endif
#if !USING_KERNEL_PLL_LOOP
	freq_drift = 0;
#endif
#if USING_INITIAL_FREQ_ESTIMATION
	if (G.discipline_state == STATE_FREQ) {
		/* Ignore updates until the stepout threshold */
		if (since_last_update < WATCH_THRESHOLD) {
			VERB4 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
					WATCH_THRESHOLD - since_last_update);
			return 0; /* "leave poll interval as is" */
		}
# if !USING_KERNEL_PLL_LOOP
		freq_drift = (offset - G.last_update_offset) / since_last_update;
# endif
	}
#endif

	/* There are two main regimes: when the
	 * offset exceeds the step threshold and when it does not.
	 */
	if (abs_offset > STEP_THRESHOLD) {
#if 0
		double remains;

// This "spike state" seems to be useless, peer selection already drops
// occassional "bad" datapoints. If we are here, there were _many_
// large offsets. When a few first large offsets are seen,
// we end up in "no valid datapoints, no peer selected" state.
// Only when enough of them are seen (which means it's not a fluke),
// we end up here. Looks like _our_ clock is off.
		switch (G.discipline_state) {
		case STATE_SYNC:
			/* The first outlyer: ignore it, switch to SPIK state */
			VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
				p->p_dotted, offset,
				"");
			G.discipline_state = STATE_SPIK;
			return -1; /* "decrease poll interval" */

		case STATE_SPIK:
			/* Ignore succeeding outlyers until either an inlyer
			 * is found or the stepout threshold is exceeded.
			 */
			remains = WATCH_THRESHOLD - since_last_update;
			if (remains > 0) {
				VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
					p->p_dotted, offset,
					", datapoint ignored");
				return -1; /* "decrease poll interval" */
			}
			/* fall through: we need to step */
		} /* switch */
#endif

		/* Step the time and clamp down the poll interval.
		 *
		 * In NSET state an initial frequency correction is
		 * not available, usually because the frequency file has
		 * not yet been written. Since the time is outside the
		 * capture range, the clock is stepped. The frequency
		 * will be set directly following the stepout interval.
		 *
		 * In FSET state the initial frequency has been set
		 * from the frequency file. Since the time is outside
		 * the capture range, the clock is stepped immediately,
		 * rather than after the stepout interval. Guys get
		 * nervous if it takes 17 minutes to set the clock for
		 * the first time.
		 *
		 * In SPIK state the stepout threshold has expired and
		 * the phase is still above the step threshold. Note
		 * that a single spike greater than the step threshold
		 * is always suppressed, even at the longer poll
		 * intervals.
		 */
		VERB4 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
		step_time(offset);
		if (option_mask32 & OPT_q) {
			/* We were only asked to set time once. Done. */
			exit(0);
		}

		clamp_pollexp_and_set_MAXSTRAT();

		run_script("step", offset);

		recv_time += offset;

#if USING_INITIAL_FREQ_ESTIMATION
		if (G.discipline_state == STATE_NSET) {
			set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
			return 1; /* "ok to increase poll interval" */
		}
#endif
		abs_offset = offset = 0;
		set_new_values(STATE_SYNC, offset, recv_time);
	} else { /* abs_offset <= STEP_THRESHOLD */

		/* The ratio is calculated before jitter is updated to make
		 * poll adjust code more sensitive to large offsets.
		 */
		G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;

		/* Compute the clock jitter as the RMS of exponentially
		 * weighted offset differences. Used by the poll adjust code.
		 */
		etemp = SQUARE(G.discipline_jitter);
		dtemp = SQUARE(offset - G.last_update_offset);
		G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
		if (G.discipline_jitter < G_precision_sec)
			G.discipline_jitter = G_precision_sec;

		switch (G.discipline_state) {
		case STATE_NSET:
			if (option_mask32 & OPT_q) {
				/* We were only asked to set time once.
				 * The clock is precise enough, no need to step.
				 */
				exit(0);
			}
#if USING_INITIAL_FREQ_ESTIMATION
			/* This is the first update received and the frequency
			 * has not been initialized. The first thing to do
			 * is directly measure the oscillator frequency.
			 */
			set_new_values(STATE_FREQ, offset, recv_time);
#else
			set_new_values(STATE_SYNC, offset, recv_time);
#endif
			VERB4 bb_error_msg("transitioning to FREQ, datapoint ignored");
			return 0; /* "leave poll interval as is" */

#if 0 /* this is dead code for now */
		case STATE_FSET:
			/* This is the first update and the frequency
			 * has been initialized. Adjust the phase, but
			 * don't adjust the frequency until the next update.
			 */
			set_new_values(STATE_SYNC, offset, recv_time);
			/* freq_drift remains 0 */
			break;
#endif

#if USING_INITIAL_FREQ_ESTIMATION
		case STATE_FREQ:
			/* since_last_update >= WATCH_THRESHOLD, we waited enough.
			 * Correct the phase and frequency and switch to SYNC state.
			 * freq_drift was already estimated (see code above)
			 */
			set_new_values(STATE_SYNC, offset, recv_time);
			break;
#endif

		default:
#if !USING_KERNEL_PLL_LOOP
			/* Compute freq_drift due to PLL and FLL contributions.
			 *
			 * The FLL and PLL frequency gain constants
			 * depend on the poll interval and Allan
			 * intercept. The FLL is not used below one-half
			 * the Allan intercept. Above that the loop gain
			 * increases in steps to 1 / AVG.
			 */
			if ((1 << G.poll_exp) > ALLAN / 2) {
				etemp = FLL - G.poll_exp;
				if (etemp < AVG)
					etemp = AVG;
				freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
			}
			/* For the PLL the integration interval
			 * (numerator) is the minimum of the update
			 * interval and poll interval. This allows
			 * oversampling, but not undersampling.
			 */
			etemp = MIND(since_last_update, (1 << G.poll_exp));
			dtemp = (4 * PLL) << G.poll_exp;
			freq_drift += offset * etemp / SQUARE(dtemp);
#endif
			set_new_values(STATE_SYNC, offset, recv_time);
			break;
		}
		if (G.stratum != p->lastpkt_stratum + 1) {
			G.stratum = p->lastpkt_stratum + 1;
			run_script("stratum", offset);
		}
	}

	G.reftime = G.cur_time;
	G.ntp_status = p->lastpkt_status;
	G.refid = p->lastpkt_refid;
	G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
	dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
	dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
	G.rootdisp = p->lastpkt_rootdisp + dtemp;
	VERB4 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);

	/* We are in STATE_SYNC now, but did not do adjtimex yet.
	 * (Any other state does not reach this, they all return earlier)
	 * By this time, freq_drift and offset are set
	 * to values suitable for adjtimex.
	 */
#if !USING_KERNEL_PLL_LOOP
	/* Calculate the new frequency drift and frequency stability (wander).
	 * Compute the clock wander as the RMS of exponentially weighted
	 * frequency differences. This is not used directly, but can,
	 * along with the jitter, be a highly useful monitoring and
	 * debugging tool.
	 */
	dtemp = G.discipline_freq_drift + freq_drift;
	G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
	etemp = SQUARE(G.discipline_wander);
	dtemp = SQUARE(dtemp);
	G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);

	VERB4 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
			G.discipline_freq_drift,
			(long)(G.discipline_freq_drift * 65536e6),
			freq_drift,
			G.discipline_wander);
#endif
	VERB4 {
		memset(&tmx, 0, sizeof(tmx));
		if (adjtimex(&tmx) < 0)
			bb_perror_msg_and_die("adjtimex");
		bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
				tmx.freq, tmx.offset, tmx.status, tmx.constant);
	}

	memset(&tmx, 0, sizeof(tmx));
#if 0
//doesn't work, offset remains 0 (!) in kernel:
//ntpd:  set adjtimex freq:1786097 tmx.offset:77487
//ntpd: prev adjtimex freq:1786097 tmx.offset:0
//ntpd:  cur adjtimex freq:1786097 tmx.offset:0
	tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
	/* 65536 is one ppm */
	tmx.freq = G.discipline_freq_drift * 65536e6;
#endif
	tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
	tmx.constant = (int)G.poll_exp - 4;
	/* EXPERIMENTAL.
	 * The below if statement should be unnecessary, but...
	 * It looks like Linux kernel's PLL is far too gentle in changing
	 * tmx.freq in response to clock offset. Offset keeps growing
	 * and eventually we fall back to smaller poll intervals.
	 * We can make correction more aggressive (about x2) by supplying
	 * PLL time constant which is one less than the real one.
	 * To be on a safe side, let's do it only if offset is significantly
	 * larger than jitter.
	 */
	if (G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
		tmx.constant--;
	tmx.offset = (long)(offset * 1000000); /* usec */
	if (SLEW_THRESHOLD < STEP_THRESHOLD) {
		if (tmx.offset > (long)(SLEW_THRESHOLD * 1000000)) {
			tmx.offset = (long)(SLEW_THRESHOLD * 1000000);
			tmx.constant--;
		}
		if (tmx.offset < -(long)(SLEW_THRESHOLD * 1000000)) {
			tmx.offset = -(long)(SLEW_THRESHOLD * 1000000);
			tmx.constant--;
		}
	}
	if (tmx.constant < 0)
		tmx.constant = 0;

	tmx.status = STA_PLL;
	if (G.ntp_status & LI_PLUSSEC)
		tmx.status |= STA_INS;
	if (G.ntp_status & LI_MINUSSEC)
		tmx.status |= STA_DEL;

	//tmx.esterror = (uint32_t)(clock_jitter * 1e6);
	//tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
	rc = adjtimex(&tmx);
	if (rc < 0)
		bb_perror_msg_and_die("adjtimex");
	/* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
	 * Not sure why. Perhaps it is normal.
	 */
	VERB4 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
				rc, tmx.freq, tmx.offset, tmx.status);
	G.kernel_freq_drift = tmx.freq / 65536;
	VERB2 bb_error_msg("update from:%s offset:%+f delay:%f jitter:%f clock drift:%+.3fppm tc:%d",
			p->p_dotted,
			offset,
			p->lastpkt_delay,
			G.discipline_jitter,
			(double)tmx.freq / 65536,
			(int)tmx.constant
	);

	return 1; /* "ok to increase poll interval" */
}


/*
 * We've got a new reply packet from a peer, process it
 * (helpers first)
 */
static unsigned
poll_interval(int upper_bound)
{
	unsigned interval, r, mask;
	interval = 1 << G.poll_exp;
	if (interval > upper_bound)
		interval = upper_bound;
	mask = ((interval-1) >> 4) | 1;
	r = rand();
	interval += r & mask; /* ~ random(0..1) * interval/16 */
	VERB4 bb_error_msg("chose poll interval:%u (poll_exp:%d)", interval, G.poll_exp);
	return interval;
}
static void
adjust_poll(int count)
{
	G.polladj_count += count;
	if (G.polladj_count > POLLADJ_LIMIT) {
		G.polladj_count = 0;
		if (G.poll_exp < MAXPOLL) {
			G.poll_exp++;
			VERB4 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
					G.discipline_jitter, G.poll_exp);
		}
	} else if (G.polladj_count < -POLLADJ_LIMIT || (count < 0 && G.poll_exp > BIGPOLL)) {
		G.polladj_count = 0;
		if (G.poll_exp > MINPOLL) {
			llist_t *item;

			G.poll_exp--;
			/* Correct p->next_action_time in each peer
			 * which waits for sending, so that they send earlier.
			 * Old pp->next_action_time are on the order
			 * of t + (1 << old_poll_exp) + small_random,
			 * we simply need to subtract ~half of that.
			 */
			for (item = G.ntp_peers; item != NULL; item = item->link) {
				peer_t *pp = (peer_t *) item->data;
				if (pp->p_fd < 0)
					pp->next_action_time -= (1 << G.poll_exp);
			}
			VERB4 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
					G.discipline_jitter, G.poll_exp);
		}
	} else {
		VERB4 bb_error_msg("polladj: count:%d", G.polladj_count);
	}
}
static NOINLINE void
recv_and_process_peer_pkt(peer_t *p)
{
	int         rc;
	ssize_t     size;
	msg_t       msg;
	double      T1, T2, T3, T4;
	double      offset;
	double      prev_delay, delay;
	unsigned    interval;
	datapoint_t *datapoint;
	peer_t      *q;

	offset = 0;

	/* We can recvfrom here and check from.IP, but some multihomed
	 * ntp servers reply from their *other IP*.
	 * TODO: maybe we should check at least what we can: from.port == 123?
	 */
 recv_again:
	size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
	if (size < 0) {
		if (errno == EINTR)
			/* Signal caught */
			goto recv_again;
		if (errno == EAGAIN)
			/* There was no packet after all
			 * (poll() returning POLLIN for a fd
			 * is not a ironclad guarantee that data is there)
			 */
			return;
		/*
		 * If you need a different handling for a specific
		 * errno, always explain it in comment.
		 */
		bb_perror_msg_and_die("recv(%s) error", p->p_dotted);
	}

	if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
		bb_error_msg("malformed packet received from %s", p->p_dotted);
		return;
	}

	if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
	 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
	) {
		/* Somebody else's packet */
		return;
	}

	/* We do not expect any more packets from this peer for now.
	 * Closing the socket informs kernel about it.
	 * We open a new socket when we send a new query.
	 */
	close(p->p_fd);
	p->p_fd = -1;

	if ((msg.m_status & LI_ALARM) == LI_ALARM
	 || msg.m_stratum == 0
	 || msg.m_stratum > NTP_MAXSTRATUM
	) {
		bb_error_msg("reply from %s: peer is unsynced", p->p_dotted);
		/*
		 * Stratum 0 responses may have commands in 32-bit m_refid field:
		 * "DENY", "RSTR" - peer does not like us at all,
		 * "RATE" - peer is overloaded, reduce polling freq.
		 * If poll interval is small, increase it.
		 */
		if (G.poll_exp < BIGPOLL)
			goto increase_interval;
		goto pick_normal_interval;
	}

//	/* Verify valid root distance */
//	if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
//		return;                 /* invalid header values */

	/*
	 * From RFC 2030 (with a correction to the delay math):
	 *
	 * Timestamp Name          ID   When Generated
	 * ------------------------------------------------------------
	 * Originate Timestamp     T1   time request sent by client
	 * Receive Timestamp       T2   time request received by server
	 * Transmit Timestamp      T3   time reply sent by server
	 * Destination Timestamp   T4   time reply received by client
	 *
	 * The roundtrip delay and local clock offset are defined as
	 *
	 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
	 */
	T1 = p->p_xmttime;
	T2 = lfp_to_d(msg.m_rectime);
	T3 = lfp_to_d(msg.m_xmttime);
	T4 = G.cur_time;

	/* The delay calculation is a special case. In cases where the
	 * server and client clocks are running at different rates and
	 * with very fast networks, the delay can appear negative. In
	 * order to avoid violating the Principle of Least Astonishment,
	 * the delay is clamped not less than the system precision.
	 */
	delay = (T4 - T1) - (T3 - T2);
	if (delay < G_precision_sec)
		delay = G_precision_sec;
	/*
	 * If this packet's delay is much bigger than the last one,
	 * it's better to just ignore it than use its much less precise value.
	 */
	prev_delay = p->p_raw_delay;
	p->p_raw_delay = delay;
	if (p->reachable_bits && delay > prev_delay * BAD_DELAY_GROWTH) {
		bb_error_msg("reply from %s: delay %f is too high, ignoring", p->p_dotted, delay);
		goto pick_normal_interval;
	}

	p->lastpkt_delay = delay;
	p->lastpkt_recv_time = T4;
	VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
	p->lastpkt_status = msg.m_status;
	p->lastpkt_stratum = msg.m_stratum;
	p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
	p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
	p->lastpkt_refid = msg.m_refid;

	p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
	datapoint = &p->filter_datapoint[p->datapoint_idx];
	datapoint->d_recv_time = T4;
	datapoint->d_offset    = offset = ((T2 - T1) + (T3 - T4)) / 2;
	datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
	if (!p->reachable_bits) {
		/* 1st datapoint ever - replicate offset in every element */
		int i;
		for (i = 0; i < NUM_DATAPOINTS; i++) {
			p->filter_datapoint[i].d_offset = offset;
		}
	}

	p->reachable_bits |= 1;
	if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
		bb_error_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
			p->p_dotted,
			offset,
			p->lastpkt_delay,
			p->lastpkt_status,
			p->lastpkt_stratum,
			p->lastpkt_refid,
			p->lastpkt_rootdelay,
			p->reachable_bits
			/* not shown: m_ppoll, m_precision_exp, m_rootdisp,
			 * m_reftime, m_orgtime, m_rectime, m_xmttime
			 */
		);
	}

	/* Muck with statictics and update the clock */
	filter_datapoints(p);
	q = select_and_cluster();
	rc = 0;
	if (q) {
		if (!(option_mask32 & OPT_w)) {
			rc = update_local_clock(q);
#if 0
//Disabled this because there is a case where largish offsets
//are unavoidable: if network round-trip delay is, say, ~0.6s,
//error in offset estimation would be ~delay/2 ~= 0.3s.
//Thus, offsets will be usually in -0.3...0.3s range.
//In this case, this code would keep poll interval small,
//but it won't be helping.
//BIGOFF check below deals with a case of seeing multi-second offsets.

			/* If drift is dangerously large, immediately
			 * drop poll interval one step down.
			 */
			if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
				VERB4 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
				adjust_poll(-POLLADJ_LIMIT * 3);
				rc = 0;
			}
#endif
		}
	} else {
		/* No peer selected.
		 * If poll interval is small, increase it.
		 */
		if (G.poll_exp < BIGPOLL)
			goto increase_interval;
	}

	if (rc != 0) {
		/* Adjust the poll interval by comparing the current offset
		 * with the clock jitter. If the offset is less than
		 * the clock jitter times a constant, then the averaging interval
		 * is increased, otherwise it is decreased. A bit of hysteresis
		 * helps calm the dance. Works best using burst mode.
		 */
		if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
			/* was += G.poll_exp but it is a bit
			 * too optimistic for my taste at high poll_exp's */
 increase_interval:
			adjust_poll(MINPOLL);
		} else {
			VERB3 if (rc > 0)
				bb_error_msg("want smaller interval: offset/jitter = %u",
					G.offset_to_jitter_ratio);
			adjust_poll(-G.poll_exp * 2);
		}
	}

	/* Decide when to send new query for this peer */
 pick_normal_interval:
	interval = poll_interval(INT_MAX);
	if (fabs(offset) >= BIGOFF && interval > BIGOFF_INTERVAL) {
		/* If we are synced, offsets are less than SLEW_THRESHOLD,
		 * or at the very least not much larger than it.
		 * Now we see a largish one.
		 * Either this peer is feeling bad, or packet got corrupted,
		 * or _our_ clock is wrong now and _all_ peers will show similar
		 * largish offsets too.
		 * I observed this with laptop suspend stopping clock.
		 * In any case, it makes sense to make next request soonish:
		 * cases 1 and 2: get a better datapoint,
		 * case 3: allows to resync faster.
		 */
		interval = BIGOFF_INTERVAL;
	}

	set_next(p, interval);
}

#if ENABLE_FEATURE_NTPD_SERVER
static NOINLINE void
recv_and_process_client_pkt(void /*int fd*/)
{
	ssize_t          size;
	//uint8_t          version;
	len_and_sockaddr *to;
	struct sockaddr  *from;
	msg_t            msg;
	uint8_t          query_status;
	l_fixedpt_t      query_xmttime;

	to = get_sock_lsa(G_listen_fd);
	from = xzalloc(to->len);

	size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
	if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
		char *addr;
		if (size < 0) {
			if (errno == EAGAIN)
				goto bail;
			bb_perror_msg_and_die("recv");
		}
		addr = xmalloc_sockaddr2dotted_noport(from);
		bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
		free(addr);
		goto bail;
	}

	/* Respond only to client and symmetric active packets */
	if ((msg.m_status & MODE_MASK) != MODE_CLIENT
	 && (msg.m_status & MODE_MASK) != MODE_SYM_ACT
	) {
		goto bail;
	}

	query_status = msg.m_status;
	query_xmttime = msg.m_xmttime;

	/* Build a reply packet */
	memset(&msg, 0, sizeof(msg));
	msg.m_status = G.stratum < MAXSTRAT ? (G.ntp_status & LI_MASK) : LI_ALARM;
	msg.m_status |= (query_status & VERSION_MASK);
	msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
			MODE_SERVER : MODE_SYM_PAS;
	msg.m_stratum = G.stratum;
	msg.m_ppoll = G.poll_exp;
	msg.m_precision_exp = G_precision_exp;
	/* this time was obtained between poll() and recv() */
	msg.m_rectime = d_to_lfp(G.cur_time);
	msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
	if (G.peer_cnt == 0) {
		/* we have no peers: "stratum 1 server" mode. reftime = our own time */
		G.reftime = G.cur_time;
	}
	msg.m_reftime = d_to_lfp(G.reftime);
	msg.m_orgtime = query_xmttime;
	msg.m_rootdelay = d_to_sfp(G.rootdelay);
//simple code does not do this, fix simple code!
	msg.m_rootdisp = d_to_sfp(G.rootdisp);
	//version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
	msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;

	/* We reply from the local address packet was sent to,
	 * this makes to/from look swapped here: */
	do_sendto(G_listen_fd,
		/*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
		&msg, size);

 bail:
	free(to);
	free(from);
}
#endif

/* Upstream ntpd's options:
 *
 * -4   Force DNS resolution of host names to the IPv4 namespace.
 * -6   Force DNS resolution of host names to the IPv6 namespace.
 * -a   Require cryptographic authentication for broadcast client,
 *      multicast client and symmetric passive associations.
 *      This is the default.
 * -A   Do not require cryptographic authentication for broadcast client,
 *      multicast client and symmetric passive associations.
 *      This is almost never a good idea.
 * -b   Enable the client to synchronize to broadcast servers.
 * -c conffile
 *      Specify the name and path of the configuration file,
 *      default /etc/ntp.conf
 * -d   Specify debugging mode. This option may occur more than once,
 *      with each occurrence indicating greater detail of display.
 * -D level
 *      Specify debugging level directly.
 * -f driftfile
 *      Specify the name and path of the frequency file.
 *      This is the same operation as the "driftfile FILE"
 *      configuration command.
 * -g   Normally, ntpd exits with a message to the system log
 *      if the offset exceeds the panic threshold, which is 1000 s
 *      by default. This option allows the time to be set to any value
 *      without restriction; however, this can happen only once.
 *      If the threshold is exceeded after that, ntpd will exit
 *      with a message to the system log. This option can be used
 *      with the -q and -x options. See the tinker command for other options.
 * -i jaildir
 *      Chroot the server to the directory jaildir. This option also implies
 *      that the server attempts to drop root privileges at startup
 *      (otherwise, chroot gives very little additional security).
 *      You may need to also specify a -u option.
 * -k keyfile
 *      Specify the name and path of the symmetric key file,
 *      default /etc/ntp/keys. This is the same operation
 *      as the "keys FILE" configuration command.
 * -l logfile
 *      Specify the name and path of the log file. The default
 *      is the system log file. This is the same operation as
 *      the "logfile FILE" configuration command.
 * -L   Do not listen to virtual IPs. The default is to listen.
 * -n   Don't fork.
 * -N   To the extent permitted by the operating system,
 *      run the ntpd at the highest priority.
 * -p pidfile
 *      Specify the name and path of the file used to record the ntpd
 *      process ID. This is the same operation as the "pidfile FILE"
 *      configuration command.
 * -P priority
 *      To the extent permitted by the operating system,
 *      run the ntpd at the specified priority.
 * -q   Exit the ntpd just after the first time the clock is set.
 *      This behavior mimics that of the ntpdate program, which is
 *      to be retired. The -g and -x options can be used with this option.
 *      Note: The kernel time discipline is disabled with this option.
 * -r broadcastdelay
 *      Specify the default propagation delay from the broadcast/multicast
 *      server to this client. This is necessary only if the delay
 *      cannot be computed automatically by the protocol.
 * -s statsdir
 *      Specify the directory path for files created by the statistics
 *      facility. This is the same operation as the "statsdir DIR"
 *      configuration command.
 * -t key
 *      Add a key number to the trusted key list. This option can occur
 *      more than once.
 * -u user[:group]
 *      Specify a user, and optionally a group, to switch to.
 * -v variable
 * -V variable
 *      Add a system variable listed by default.
 * -x   Normally, the time is slewed if the offset is less than the step
 *      threshold, which is 128 ms by default, and stepped if above
 *      the threshold. This option sets the threshold to 600 s, which is
 *      well within the accuracy window to set the clock manually.
 *      Note: since the slew rate of typical Unix kernels is limited
 *      to 0.5 ms/s, each second of adjustment requires an amortization
 *      interval of 2000 s. Thus, an adjustment as much as 600 s
 *      will take almost 14 days to complete. This option can be used
 *      with the -g and -q options. See the tinker command for other options.
 *      Note: The kernel time discipline is disabled with this option.
 */

/* By doing init in a separate function we decrease stack usage
 * in main loop.
 */
static NOINLINE void ntp_init(char **argv)
{
	unsigned opts;
	llist_t *peers;

	srand(getpid());

	if (getuid())
		bb_error_msg_and_die(bb_msg_you_must_be_root);

	/* Set some globals */
	G.discipline_jitter = G_precision_sec;
	G.stratum = MAXSTRAT;
	if (BURSTPOLL != 0)
		G.poll_exp = BURSTPOLL; /* speeds up initial sync */
	G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */

	/* Parse options */
	peers = NULL;
	opts = getopt32(argv, "^"
			"nqNx" /* compat */
			"wp:*S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
			IF_FEATURE_NTPD_SERVER("I:") /* compat */
			"d" /* compat */
			"46aAbgL" /* compat, ignored */
				"\0"
				"dd:wn"  /* -d: counter; -p: list; -w implies -n */
				IF_FEATURE_NTPD_SERVER(":Il") /* -I implies -l */
			, &peers, &G.script_name,
#if ENABLE_FEATURE_NTPD_SERVER
			&G.if_name,
#endif
			&G.verbose);

//	if (opts & OPT_x) /* disable stepping, only slew is allowed */
//		G.time_was_stepped = 1;

#if ENABLE_FEATURE_NTPD_SERVER
	G_listen_fd = -1;
	if (opts & OPT_l) {
		G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
		if (G.if_name) {
			if (setsockopt_bindtodevice(G_listen_fd, G.if_name))
				xfunc_die();
		}
		socket_want_pktinfo(G_listen_fd);
		setsockopt_int(G_listen_fd, IPPROTO_IP, IP_TOS, IPTOS_LOWDELAY);
	}
#endif
	/* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
	if (opts & OPT_N)
		setpriority(PRIO_PROCESS, 0, -15);

	if (!(opts & OPT_n)) {
		bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
		logmode = LOGMODE_NONE;
	}

	if (peers) {
		while (peers)
			add_peers(llist_pop(&peers));
	}
#if ENABLE_FEATURE_NTPD_CONF
	else {
		parser_t *parser;
		char *token[3];

		parser = config_open("/etc/ntp.conf");
		while (config_read(parser, token, 3, 1, "# \t", PARSE_NORMAL)) {
			if (strcmp(token[0], "server") == 0 && token[1]) {
				add_peers(token[1]);
				continue;
			}
			bb_error_msg("skipping %s:%u: unimplemented command '%s'",
				"/etc/ntp.conf", parser->lineno, token[0]
			);
		}
		config_close(parser);
	}
#endif
	if (G.peer_cnt == 0) {
		if (!(opts & OPT_l))
			bb_show_usage();
		/* -l but no peers: "stratum 1 server" mode */
		G.stratum = 1;
	}
	/* If network is up, syncronization occurs in ~10 seconds.
	 * We give "ntpd -q" 10 seconds to get first reply,
	 * then another 50 seconds to finish syncing.
	 *
	 * I tested ntpd 4.2.6p1 and apparently it never exits
	 * (will try forever), but it does not feel right.
	 * The goal of -q is to act like ntpdate: set time
	 * after a reasonably small period of polling, or fail.
	 */
	if (opts & OPT_q) {
		option_mask32 |= OPT_qq;
		alarm(10);
	}

	bb_signals(0
		| (1 << SIGTERM)
		| (1 << SIGINT)
		| (1 << SIGALRM)
		, record_signo
	);
	bb_signals(0
		| (1 << SIGPIPE)
		| (1 << SIGCHLD)
		, SIG_IGN
	);
}

int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
int ntpd_main(int argc UNUSED_PARAM, char **argv)
{
#undef G
	struct globals G;
	struct pollfd *pfd;
	peer_t **idx2peer;
	unsigned cnt;

	memset(&G, 0, sizeof(G));
	SET_PTR_TO_GLOBALS(&G);

	ntp_init(argv);

	/* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
	cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
	idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
	pfd = xzalloc(sizeof(pfd[0]) * cnt);

	/* Countdown: we never sync before we sent INITIAL_SAMPLES+1
	 * packets to each peer.
	 * NB: if some peer is not responding, we may end up sending
	 * fewer packets to it and more to other peers.
	 * NB2: sync usually happens using INITIAL_SAMPLES packets,
	 * since last reply does not come back instantaneously.
	 */
	cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);

	write_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");

	while (!bb_got_signal) {
		llist_t *item;
		unsigned i, j;
		int nfds, timeout;
		double nextaction;

		/* Nothing between here and poll() blocks for any significant time */

		nextaction = G.cur_time + 3600;

		i = 0;
#if ENABLE_FEATURE_NTPD_SERVER
		if (G_listen_fd != -1) {
			pfd[0].fd = G_listen_fd;
			pfd[0].events = POLLIN;
			i++;
		}
#endif
		/* Pass over peer list, send requests, time out on receives */
		for (item = G.ntp_peers; item != NULL; item = item->link) {
			peer_t *p = (peer_t *) item->data;

			if (p->next_action_time <= G.cur_time) {
				if (p->p_fd == -1) {
					/* Time to send new req */
					if (--cnt == 0) {
						VERB4 bb_error_msg("disabling burst mode");
						G.polladj_count = 0;
						G.poll_exp = MINPOLL;
					}
					send_query_to_peer(p);
				} else {
					/* Timed out waiting for reply */
					close(p->p_fd);
					p->p_fd = -1;
					/* If poll interval is small, increase it */
					if (G.poll_exp < BIGPOLL)
						adjust_poll(MINPOLL);
					timeout = poll_interval(NOREPLY_INTERVAL);
					bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
							p->p_dotted, p->reachable_bits, timeout);

					/* What if don't see it because it changed its IP? */
					if (p->reachable_bits == 0)
						resolve_peer_hostname(p);

					set_next(p, timeout);
				}
			}

			if (p->next_action_time < nextaction)
				nextaction = p->next_action_time;

			if (p->p_fd >= 0) {
				/* Wait for reply from this peer */
				pfd[i].fd = p->p_fd;
				pfd[i].events = POLLIN;
				idx2peer[i] = p;
				i++;
			}
		}

		timeout = nextaction - G.cur_time;
		if (timeout < 0)
			timeout = 0;
		timeout++; /* (nextaction - G.cur_time) rounds down, compensating */

		/* Here we may block */
		VERB2 {
			if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
				/* We wait for at least one reply.
				 * Poll for it, without wasting time for message.
				 * Since replies often come under 1 second, this also
				 * reduces clutter in logs.
				 */
				nfds = poll(pfd, i, 1000);
				if (nfds != 0)
					goto did_poll;
				if (--timeout <= 0)
					goto did_poll;
			}
			bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
		}
		nfds = poll(pfd, i, timeout * 1000);
 did_poll:
		gettime1900d(); /* sets G.cur_time */
		if (nfds <= 0) {
			double ct;
			int dns_error;

			if (bb_got_signal)
				break; /* poll was interrupted by a signal */

			if (G.cur_time - G.last_script_run > 11*60) {
				/* Useful for updating battery-backed RTC and such */
				run_script("periodic", G.last_update_offset);
				gettime1900d(); /* sets G.cur_time */
			}

			/* Resolve peer names to IPs, if not resolved yet.
			 * We do it only when poll timed out:
			 * this way, we almost never overlap DNS resolution with
			 * "request-reply" packet round trip.
			 */
			dns_error = 0;
			ct = G.cur_time;
			for (item = G.ntp_peers; item != NULL; item = item->link) {
				peer_t *p = (peer_t *) item->data;
				if (p->next_action_time <= ct && !p->p_lsa) {
					/* This can take up to ~10 sec per each DNS query */
					dns_error |= (!resolve_peer_hostname(p));
				}
			}
			if (!dns_error)
				goto check_unsync;
			/* Set next time for those which are still not resolved */
			gettime1900d(); /* sets G.cur_time (needed for set_next()) */
			for (item = G.ntp_peers; item != NULL; item = item->link) {
				peer_t *p = (peer_t *) item->data;
				if (p->next_action_time <= ct && !p->p_lsa) {
					set_next(p, HOSTNAME_INTERVAL * p->dns_errors);
				}
			}
			goto check_unsync;
		}

		/* Process any received packets */
		j = 0;
#if ENABLE_FEATURE_NTPD_SERVER
		if (G.listen_fd != -1) {
			if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
				nfds--;
				recv_and_process_client_pkt(/*G.listen_fd*/);
				gettime1900d(); /* sets G.cur_time */
			}
			j = 1;
		}
#endif
		for (; nfds != 0 && j < i; j++) {
			if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
				/*
				 * At init, alarm was set to 10 sec.
				 * Now we did get a reply.
				 * Increase timeout to 50 seconds to finish syncing.
				 */
				if (option_mask32 & OPT_qq) {
					option_mask32 &= ~OPT_qq;
					alarm(50);
				}
				nfds--;
				recv_and_process_peer_pkt(idx2peer[j]);
				gettime1900d(); /* sets G.cur_time */
			}
		}

 check_unsync:
		if (G.ntp_peers && G.stratum != MAXSTRAT) {
			for (item = G.ntp_peers; item != NULL; item = item->link) {
				peer_t *p = (peer_t *) item->data;
				if (p->reachable_bits)
					goto have_reachable_peer;
			}
			/* No peer responded for last 8 packets, panic */
			clamp_pollexp_and_set_MAXSTRAT();
			run_script("unsync", 0.0);
 have_reachable_peer: ;
		}
	} /* while (!bb_got_signal) */

	remove_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
	kill_myself_with_sig(bb_got_signal);
}






/*** openntpd-4.6 uses only adjtime, not adjtimex ***/

/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/

#if 0
static double
direct_freq(double fp_offset)
{
#ifdef KERNEL_PLL
	/*
	 * If the kernel is enabled, we need the residual offset to
	 * calculate the frequency correction.
	 */
	if (pll_control && kern_enable) {
		memset(&ntv, 0, sizeof(ntv));
		ntp_adjtime(&ntv);
#ifdef STA_NANO
		clock_offset = ntv.offset / 1e9;
#else /* STA_NANO */
		clock_offset = ntv.offset / 1e6;
#endif /* STA_NANO */
		drift_comp = FREQTOD(ntv.freq);
	}
#endif /* KERNEL_PLL */
	set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
	wander_resid = 0;
	return drift_comp;
}

static void
set_freq(double freq) /* frequency update */
{
	char tbuf[80];

	drift_comp = freq;

#ifdef KERNEL_PLL
	/*
	 * If the kernel is enabled, update the kernel frequency.
	 */
	if (pll_control && kern_enable) {
		memset(&ntv, 0, sizeof(ntv));
		ntv.modes = MOD_FREQUENCY;
		ntv.freq = DTOFREQ(drift_comp);
		ntp_adjtime(&ntv);
		snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
		report_event(EVNT_FSET, NULL, tbuf);
	} else {
		snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
		report_event(EVNT_FSET, NULL, tbuf);
	}
#else /* KERNEL_PLL */
	snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
	report_event(EVNT_FSET, NULL, tbuf);
#endif /* KERNEL_PLL */
}

...
...
...

#ifdef KERNEL_PLL
	/*
	 * This code segment works when clock adjustments are made using
	 * precision time kernel support and the ntp_adjtime() system
	 * call. This support is available in Solaris 2.6 and later,
	 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
	 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
	 * DECstation 5000/240 and Alpha AXP, additional kernel
	 * modifications provide a true microsecond clock and nanosecond
	 * clock, respectively.
	 *
	 * Important note: The kernel discipline is used only if the
	 * step threshold is less than 0.5 s, as anything higher can
	 * lead to overflow problems. This might occur if some misguided
	 * lad set the step threshold to something ridiculous.
	 */
	if (pll_control && kern_enable) {

#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)

		/*
		 * We initialize the structure for the ntp_adjtime()
		 * system call. We have to convert everything to
		 * microseconds or nanoseconds first. Do not update the
		 * system variables if the ext_enable flag is set. In
		 * this case, the external clock driver will update the
		 * variables, which will be read later by the local
		 * clock driver. Afterwards, remember the time and
		 * frequency offsets for jitter and stability values and
		 * to update the frequency file.
		 */
		memset(&ntv,  0, sizeof(ntv));
		if (ext_enable) {
			ntv.modes = MOD_STATUS;
		} else {
#ifdef STA_NANO
			ntv.modes = MOD_BITS | MOD_NANO;
#else /* STA_NANO */
			ntv.modes = MOD_BITS;
#endif /* STA_NANO */
			if (clock_offset < 0)
				dtemp = -.5;
			else
				dtemp = .5;
#ifdef STA_NANO
			ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
			ntv.constant = sys_poll;
#else /* STA_NANO */
			ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
			ntv.constant = sys_poll - 4;
#endif /* STA_NANO */
			ntv.esterror = (u_int32)(clock_jitter * 1e6);
			ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
			ntv.status = STA_PLL;

			/*
			 * Enable/disable the PPS if requested.
			 */
			if (pps_enable) {
				if (!(pll_status & STA_PPSTIME))
					report_event(EVNT_KERN,
						NULL, "PPS enabled");
				ntv.status |= STA_PPSTIME | STA_PPSFREQ;
			} else {
				if (pll_status & STA_PPSTIME)
					report_event(EVNT_KERN,
						NULL, "PPS disabled");
				ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
			}
			if (sys_leap == LEAP_ADDSECOND)
				ntv.status |= STA_INS;
			else if (sys_leap == LEAP_DELSECOND)
				ntv.status |= STA_DEL;
		}

		/*
		 * Pass the stuff to the kernel. If it squeals, turn off
		 * the pps. In any case, fetch the kernel offset,
		 * frequency and jitter.
		 */
		if (ntp_adjtime(&ntv) == TIME_ERROR) {
			if (!(ntv.status & STA_PPSSIGNAL))
				report_event(EVNT_KERN, NULL,
						"PPS no signal");
		}
		pll_status = ntv.status;
#ifdef STA_NANO
		clock_offset = ntv.offset / 1e9;
#else /* STA_NANO */
		clock_offset = ntv.offset / 1e6;
#endif /* STA_NANO */
		clock_frequency = FREQTOD(ntv.freq);

		/*
		 * If the kernel PPS is lit, monitor its performance.
		 */
		if (ntv.status & STA_PPSTIME) {
#ifdef STA_NANO
			clock_jitter = ntv.jitter / 1e9;
#else /* STA_NANO */
			clock_jitter = ntv.jitter / 1e6;
#endif /* STA_NANO */
		}

#if defined(STA_NANO) && NTP_API == 4
		/*
		 * If the TAI changes, update the kernel TAI.
		 */
		if (loop_tai != sys_tai) {
			loop_tai = sys_tai;
			ntv.modes = MOD_TAI;
			ntv.constant = sys_tai;
			ntp_adjtime(&ntv);
		}
#endif /* STA_NANO */
	}
#endif /* KERNEL_PLL */
#endif