aboutsummaryrefslogtreecommitdiff
path: root/shell/math.c
blob: 15c00396523ae500a01e9567e1534c646dd6ee75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
/*
 * Arithmetic code ripped out of ash shell for code sharing.
 *
 * This code is derived from software contributed to Berkeley by
 * Kenneth Almquist.
 *
 * Original BSD copyright notice is retained at the end of this file.
 *
 * Copyright (c) 1989, 1991, 1993, 1994
 *      The Regents of the University of California.  All rights reserved.
 *
 * Copyright (c) 1997-2005 Herbert Xu <herbert@gondor.apana.org.au>
 * was re-ported from NetBSD and debianized.
 *
 * rewrite arith.y to micro stack based cryptic algorithm by
 * Copyright (c) 2001 Aaron Lehmann <aaronl@vitelus.com>
 *
 * Modified by Paul Mundt <lethal@linux-sh.org> (c) 2004 to support
 * dynamic variables.
 *
 * Modified by Vladimir Oleynik <dzo@simtreas.ru> (c) 2001-2005 to be
 * used in busybox and size optimizations,
 * rewrote arith (see notes to this), added locale support,
 * rewrote dynamic variables.
 *
 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
 */
/* Copyright (c) 2001 Aaron Lehmann <aaronl@vitelus.com>
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/* This is my infix parser/evaluator. It is optimized for size, intended
 * as a replacement for yacc-based parsers. However, it may well be faster
 * than a comparable parser written in yacc. The supported operators are
 * listed in #defines below. Parens, order of operations, and error handling
 * are supported. This code is thread safe. The exact expression format should
 * be that which POSIX specifies for shells.
 *
 * The code uses a simple two-stack algorithm. See
 * http://www.onthenet.com.au/~grahamis/int2008/week02/lect02.html
 * for a detailed explanation of the infix-to-postfix algorithm on which
 * this is based (this code differs in that it applies operators immediately
 * to the stack instead of adding them to a queue to end up with an
 * expression).
 */

/*
 * Aug 24, 2001              Manuel Novoa III
 *
 * Reduced the generated code size by about 30% (i386) and fixed several bugs.
 *
 * 1) In arith_apply():
 *    a) Cached values of *numptr and &(numptr[-1]).
 *    b) Removed redundant test for zero denominator.
 *
 * 2) In arith():
 *    a) Eliminated redundant code for processing operator tokens by moving
 *       to a table-based implementation.  Also folded handling of parens
 *       into the table.
 *    b) Combined all 3 loops which called arith_apply to reduce generated
 *       code size at the cost of speed.
 *
 * 3) The following expressions were treated as valid by the original code:
 *       1()  ,    0!  ,    1 ( *3 )   .
 *    These bugs have been fixed by internally enclosing the expression in
 *    parens and then checking that all binary ops and right parens are
 *    preceded by a valid expression (NUM_TOKEN).
 *
 * Note: It may be desirable to replace Aaron's test for whitespace with
 * ctype's isspace() if it is used by another busybox applet or if additional
 * whitespace chars should be considered.  Look below the "#include"s for a
 * precompiler test.
 */
/*
 * Aug 26, 2001              Manuel Novoa III
 *
 * Return 0 for null expressions.  Pointed out by Vladimir Oleynik.
 *
 * Merge in Aaron's comments previously posted to the busybox list,
 * modified slightly to take account of my changes to the code.
 *
 */
/*
 *  (C) 2003 Vladimir Oleynik <dzo@simtreas.ru>
 *
 * - allow access to variable,
 *   use recursive value indirection: c="2*2"; a="c"; echo $((a+=2)) produce 6
 * - implement assign syntax (VAR=expr, +=, *= etc)
 * - implement exponentiation (** operator)
 * - implement comma separated - expr, expr
 * - implement ++expr --expr expr++ expr--
 * - implement expr ? expr : expr (but second expr is always calculated)
 * - allow hexadecimal and octal numbers
 * - restore lost XOR operator
 * - protect $((num num)) as true zero expr (Manuel's error)
 * - always use special isspace(), see comment from bash ;-)
 */
#include "libbb.h"
#include "math.h"

#define lookupvar (math_state->lookupvar)
#define setvar    (math_state->setvar   )
//#define endofname (math_state->endofname)

typedef unsigned char operator;

/* An operator's token id is a bit of a bitfield. The lower 5 bits are the
 * precedence, and 3 high bits are an ID unique across operators of that
 * precedence. The ID portion is so that multiple operators can have the
 * same precedence, ensuring that the leftmost one is evaluated first.
 * Consider * and /
 */
#define tok_decl(prec,id)       (((id)<<5) | (prec))
#define PREC(op)                ((op) & 0x1F)

#define TOK_LPAREN              tok_decl(0,0)

#define TOK_COMMA               tok_decl(1,0)

/* All assignments are right associative and have the same precedence,
 * but there are 11 of them, which doesn't fit into 3 bits for unique id.
 * Abusing another precedence level:
 */
#define TOK_ASSIGN              tok_decl(2,0)
#define TOK_AND_ASSIGN          tok_decl(2,1)
#define TOK_OR_ASSIGN           tok_decl(2,2)
#define TOK_XOR_ASSIGN          tok_decl(2,3)
#define TOK_PLUS_ASSIGN         tok_decl(2,4)
#define TOK_MINUS_ASSIGN        tok_decl(2,5)
#define TOK_LSHIFT_ASSIGN       tok_decl(2,6)
#define TOK_RSHIFT_ASSIGN       tok_decl(2,7)

#define TOK_MUL_ASSIGN          tok_decl(3,0)
#define TOK_DIV_ASSIGN          tok_decl(3,1)
#define TOK_REM_ASSIGN          tok_decl(3,2)

#define fix_assignment_prec(prec) do { if (prec == 3) prec = 2; } while (0)

/* Ternary conditional operator is right associative too */
#define TOK_CONDITIONAL         tok_decl(4,0)
#define TOK_CONDITIONAL_SEP     tok_decl(4,1)

#define TOK_OR                  tok_decl(5,0)

#define TOK_AND                 tok_decl(6,0)

#define TOK_BOR                 tok_decl(7,0)

#define TOK_BXOR                tok_decl(8,0)

#define TOK_BAND                tok_decl(9,0)

#define TOK_EQ                  tok_decl(10,0)
#define TOK_NE                  tok_decl(10,1)

#define TOK_LT                  tok_decl(11,0)
#define TOK_GT                  tok_decl(11,1)
#define TOK_GE                  tok_decl(11,2)
#define TOK_LE                  tok_decl(11,3)

#define TOK_LSHIFT              tok_decl(12,0)
#define TOK_RSHIFT              tok_decl(12,1)

#define TOK_ADD                 tok_decl(13,0)
#define TOK_SUB                 tok_decl(13,1)

#define TOK_MUL                 tok_decl(14,0)
#define TOK_DIV                 tok_decl(14,1)
#define TOK_REM                 tok_decl(14,2)

/* Exponent is right associative */
#define TOK_EXPONENT            tok_decl(15,1)

/* Unary operators */
#define UNARYPREC               16
#define TOK_BNOT                tok_decl(UNARYPREC,0)
#define TOK_NOT                 tok_decl(UNARYPREC,1)

#define TOK_UMINUS              tok_decl(UNARYPREC+1,0)
#define TOK_UPLUS               tok_decl(UNARYPREC+1,1)

#define PREC_PRE                (UNARYPREC+2)

#define TOK_PRE_INC             tok_decl(PREC_PRE, 0)
#define TOK_PRE_DEC             tok_decl(PREC_PRE, 1)

#define PREC_POST               (UNARYPREC+3)

#define TOK_POST_INC            tok_decl(PREC_POST, 0)
#define TOK_POST_DEC            tok_decl(PREC_POST, 1)

#define SPEC_PREC               (UNARYPREC+4)

#define TOK_NUM                 tok_decl(SPEC_PREC, 0)
#define TOK_RPAREN              tok_decl(SPEC_PREC, 1)

static int
is_assign_op(operator op)
{
	operator prec = PREC(op);
	fix_assignment_prec(prec);
	return prec == PREC(TOK_ASSIGN)
	|| prec == PREC_PRE
	|| prec == PREC_POST;
}

static int
is_right_associative(operator prec)
{
	return prec == PREC(TOK_ASSIGN)
	|| prec == PREC(TOK_EXPONENT)
	|| prec == PREC(TOK_CONDITIONAL);
}


typedef struct {
	arith_t val;
	/* We acquire second_val only when "expr1 : expr2" part
	 * of ternary ?: op is evaluated.
	 * We treat ?: as two binary ops: (expr ? (expr1 : expr2)).
	 * ':' produces a new value which has two parts, val and second_val;
	 * then '?' selects one of them based on its left side.
	 */
	arith_t second_val;
	char second_val_present;
	/* If NULL then it's just a number, else it's a named variable */
	char *var;
} var_or_num_t;

typedef struct remembered_name {
	struct remembered_name *next;
	const char *var;
} remembered_name;


static arith_t FAST_FUNC
evaluate_string(arith_state_t *math_state, const char *expr);

static const char*
arith_lookup_val(arith_state_t *math_state, var_or_num_t *t)
{
	if (t->var) {
		const char *p = lookupvar(t->var);
		if (p) {
			remembered_name *cur;
			remembered_name cur_save;

			/* did we already see this name?
			 * testcase: a=b; b=a; echo $((a))
			 */
			for (cur = math_state->list_of_recursed_names; cur; cur = cur->next) {
				if (strcmp(cur->var, t->var) == 0) {
					/* Yes */
					return "expression recursion loop detected";
				}
			}

			/* push current var name */
			cur = math_state->list_of_recursed_names;
			cur_save.var = t->var;
			cur_save.next = cur;
			math_state->list_of_recursed_names = &cur_save;

			/* recursively evaluate p as expression */
			t->val = evaluate_string(math_state, p);

			/* pop current var name */
			math_state->list_of_recursed_names = cur;

			return math_state->errmsg;
		}
		/* treat undefined var as 0 */
		t->val = 0;
	}
	return 0;
}

/* "Applying" a token means performing it on the top elements on the integer
 * stack. For an unary operator it will only change the top element, but a
 * binary operator will pop two arguments and push the result */
static NOINLINE const char*
arith_apply(arith_state_t *math_state, operator op, var_or_num_t *numstack, var_or_num_t **numstackptr)
{
#define NUMPTR (*numstackptr)

	var_or_num_t *top_of_stack;
	arith_t rez;
	const char *err;

	/* There is no operator that can work without arguments */
	if (NUMPTR == numstack)
		goto err;

	top_of_stack = NUMPTR - 1;

	/* Resolve name to value, if needed */
	err = arith_lookup_val(math_state, top_of_stack);
	if (err)
		return err;

	rez = top_of_stack->val;
	if (op == TOK_UMINUS)
		rez = -rez;
	else if (op == TOK_NOT)
		rez = !rez;
	else if (op == TOK_BNOT)
		rez = ~rez;
	else if (op == TOK_POST_INC || op == TOK_PRE_INC)
		rez++;
	else if (op == TOK_POST_DEC || op == TOK_PRE_DEC)
		rez--;
	else if (op != TOK_UPLUS) {
		/* Binary operators */
		arith_t right_side_val;
		char bad_second_val;

		/* Binary operators need two arguments */
		if (top_of_stack == numstack)
			goto err;
		/* ...and they pop one */
		NUMPTR = top_of_stack; /* this decrements NUMPTR */

		bad_second_val = top_of_stack->second_val_present;
		if (op == TOK_CONDITIONAL) { /* ? operation */
			/* Make next if (...) protect against
			 * $((expr1 ? expr2)) - that is, missing ": expr" */
			bad_second_val = !bad_second_val;
		}
		if (bad_second_val) {
			/* Protect against $((expr <not_?_op> expr1 : expr2)) */
			return "malformed ?: operator";
		}

		top_of_stack--; /* now points to left side */

		if (op != TOK_ASSIGN) {
			/* Resolve left side value (unless the op is '=') */
			err = arith_lookup_val(math_state, top_of_stack);
			if (err)
				return err;
		}

		right_side_val = rez;
		rez = top_of_stack->val;
		if (op == TOK_CONDITIONAL) /* ? operation */
			rez = (rez ? right_side_val : top_of_stack[1].second_val);
		else if (op == TOK_CONDITIONAL_SEP) { /* : operation */
			if (top_of_stack == numstack) {
				/* Protect against $((expr : expr)) */
				return "malformed ?: operator";
			}
			top_of_stack->second_val_present = op;
			top_of_stack->second_val = right_side_val;
		}
		else if (op == TOK_BOR || op == TOK_OR_ASSIGN)
			rez |= right_side_val;
		else if (op == TOK_OR)
			rez = right_side_val || rez;
		else if (op == TOK_BAND || op == TOK_AND_ASSIGN)
			rez &= right_side_val;
		else if (op == TOK_BXOR || op == TOK_XOR_ASSIGN)
			rez ^= right_side_val;
		else if (op == TOK_AND)
			rez = rez && right_side_val;
		else if (op == TOK_EQ)
			rez = (rez == right_side_val);
		else if (op == TOK_NE)
			rez = (rez != right_side_val);
		else if (op == TOK_GE)
			rez = (rez >= right_side_val);
		else if (op == TOK_RSHIFT || op == TOK_RSHIFT_ASSIGN)
			rez >>= right_side_val;
		else if (op == TOK_LSHIFT || op == TOK_LSHIFT_ASSIGN)
			rez <<= right_side_val;
		else if (op == TOK_GT)
			rez = (rez > right_side_val);
		else if (op == TOK_LT)
			rez = (rez < right_side_val);
		else if (op == TOK_LE)
			rez = (rez <= right_side_val);
		else if (op == TOK_MUL || op == TOK_MUL_ASSIGN)
			rez *= right_side_val;
		else if (op == TOK_ADD || op == TOK_PLUS_ASSIGN)
			rez += right_side_val;
		else if (op == TOK_SUB || op == TOK_MINUS_ASSIGN)
			rez -= right_side_val;
		else if (op == TOK_ASSIGN || op == TOK_COMMA)
			rez = right_side_val;
		else if (op == TOK_EXPONENT) {
			arith_t c;
			if (right_side_val < 0)
				return "exponent less than 0";
			c = 1;
			while (--right_side_val >= 0)
				c *= rez;
			rez = c;
		}
		else if (right_side_val == 0)
			return "divide by zero";
		else if (op == TOK_DIV || op == TOK_DIV_ASSIGN)
			rez /= right_side_val;
		else if (op == TOK_REM || op == TOK_REM_ASSIGN)
			rez %= right_side_val;
	}

	if (is_assign_op(op)) {
		char buf[sizeof(arith_t)*3 + 2];

		if (top_of_stack->var == NULL) {
			/* Hmm, 1=2 ? */
//TODO: actually, bash allows ++7 but for some reason it evals to 7, not 8
			goto err;
		}
		/* Save to shell variable */
		sprintf(buf, ARITH_FMT, rez);
		setvar(top_of_stack->var, buf);
		/* After saving, make previous value for v++ or v-- */
		if (op == TOK_POST_INC)
			rez--;
		else if (op == TOK_POST_DEC)
			rez++;
	}

	top_of_stack->val = rez;
	/* Erase var name, it is just a number now */
	top_of_stack->var = NULL;
	return NULL;
 err:
	return "arithmetic syntax error";
#undef NUMPTR
}

/* longest must be first */
static const char op_tokens[] ALIGN1 = {
	'<','<','=',0, TOK_LSHIFT_ASSIGN,
	'>','>','=',0, TOK_RSHIFT_ASSIGN,
	'<','<',    0, TOK_LSHIFT,
	'>','>',    0, TOK_RSHIFT,
	'|','|',    0, TOK_OR,
	'&','&',    0, TOK_AND,
	'!','=',    0, TOK_NE,
	'<','=',    0, TOK_LE,
	'>','=',    0, TOK_GE,
	'=','=',    0, TOK_EQ,
	'|','=',    0, TOK_OR_ASSIGN,
	'&','=',    0, TOK_AND_ASSIGN,
	'*','=',    0, TOK_MUL_ASSIGN,
	'/','=',    0, TOK_DIV_ASSIGN,
	'%','=',    0, TOK_REM_ASSIGN,
	'+','=',    0, TOK_PLUS_ASSIGN,
	'-','=',    0, TOK_MINUS_ASSIGN,
	'-','-',    0, TOK_POST_DEC,
	'^','=',    0, TOK_XOR_ASSIGN,
	'+','+',    0, TOK_POST_INC,
	'*','*',    0, TOK_EXPONENT,
	'!',        0, TOK_NOT,
	'<',        0, TOK_LT,
	'>',        0, TOK_GT,
	'=',        0, TOK_ASSIGN,
	'|',        0, TOK_BOR,
	'&',        0, TOK_BAND,
	'*',        0, TOK_MUL,
	'/',        0, TOK_DIV,
	'%',        0, TOK_REM,
	'+',        0, TOK_ADD,
	'-',        0, TOK_SUB,
	'^',        0, TOK_BXOR,
	/* uniq */
	'~',        0, TOK_BNOT,
	',',        0, TOK_COMMA,
	'?',        0, TOK_CONDITIONAL,
	':',        0, TOK_CONDITIONAL_SEP,
	')',        0, TOK_RPAREN,
	'(',        0, TOK_LPAREN,
	0
};
#define ptr_to_rparen (&op_tokens[sizeof(op_tokens)-7])

const char* FAST_FUNC
endofname(const char *name)
{
	if (!is_name(*name))
		return name;
	while (*++name) {
		if (!is_in_name(*name))
			break;
	}
	return name;
}

static arith_t FAST_FUNC
evaluate_string(arith_state_t *math_state, const char *expr)
{
	operator lasttok;
	const char *errmsg;
	const char *start_expr = expr = skip_whitespace(expr);
	unsigned expr_len = strlen(expr) + 2;
	/* Stack of integers */
	/* The proof that there can be no more than strlen(startbuf)/2+1
	 * integers in any given correct or incorrect expression
	 * is left as an exercise to the reader. */
	var_or_num_t *const numstack = alloca((expr_len / 2) * sizeof(numstack[0]));
	var_or_num_t *numstackptr = numstack;
	/* Stack of operator tokens */
	operator *const stack = alloca(expr_len * sizeof(stack[0]));
	operator *stackptr = stack;

	/* Start with a left paren */
	*stackptr++ = lasttok = TOK_LPAREN;
	errmsg = NULL;

	while (1) {
		const char *p;
		operator op;
		operator prec;
		char arithval;

		expr = skip_whitespace(expr);
		arithval = *expr;
		if (arithval == '\0') {
			if (expr == start_expr) {
				/* Null expression */
				numstack->val = 0;
				goto ret;
			}

			/* This is only reached after all tokens have been extracted from the
			 * input stream. If there are still tokens on the operator stack, they
			 * are to be applied in order. At the end, there should be a final
			 * result on the integer stack */

			if (expr != ptr_to_rparen + 1) {
				/* If we haven't done so already,
				 * append a closing right paren
				 * and let the loop process it */
				expr = ptr_to_rparen;
				continue;
			}
			/* At this point, we're done with the expression */
			if (numstackptr != numstack + 1) {
				/* ...but if there isn't, it's bad */
				goto err;
			}
			if (numstack->var) {
				/* expression is $((var)) only, lookup now */
				errmsg = arith_lookup_val(math_state, numstack);
			}
			goto ret;
		}

		p = endofname(expr);
		if (p != expr) {
			/* Name */
			size_t var_name_size = (p-expr) + 1;  /* +1 for NUL */
			numstackptr->var = alloca(var_name_size);
			safe_strncpy(numstackptr->var, expr, var_name_size);
			expr = p;
 num:
			numstackptr->second_val_present = 0;
			numstackptr++;
			lasttok = TOK_NUM;
			continue;
		}

		if (isdigit(arithval)) {
			/* Number */
			numstackptr->var = NULL;
			errno = 0;
			numstackptr->val = strto_arith_t(expr, (char**) &expr, 0);
			if (errno)
				numstackptr->val = 0; /* bash compat */
			goto num;
		}

		/* Should be an operator */
		p = op_tokens;
		while (1) {
// TODO: bash allows 7+++v, treats it as 7 + ++v
// we treat it as 7++ + v and reject
			/* Compare expr to current op_tokens[] element */
			const char *e = expr;
			while (1) {
				if (*p == '\0') {
					/* Match: operator is found */
					expr = e;
					goto tok_found;
				}
				if (*p != *e)
					break;
				p++;
				e++;
			}
			/* No match, go to next element of op_tokens[] */
			while (*p)
				p++;
			p += 2; /* skip NUL and TOK_foo bytes */
			if (*p == '\0') {
				/* No next element, operator not found */
				//math_state->syntax_error_at = expr;
				goto err;
			}
		}
 tok_found:
		op = p[1]; /* fetch TOK_foo value */
		/* NB: expr now points past the operator */

		/* post grammar: a++ reduce to num */
		if (lasttok == TOK_POST_INC || lasttok == TOK_POST_DEC)
			lasttok = TOK_NUM;

		/* Plus and minus are binary (not unary) _only_ if the last
		 * token was a number, or a right paren (which pretends to be
		 * a number, since it evaluates to one). Think about it.
		 * It makes sense. */
		if (lasttok != TOK_NUM) {
			switch (op) {
			case TOK_ADD:
				op = TOK_UPLUS;
				break;
			case TOK_SUB:
				op = TOK_UMINUS;
				break;
			case TOK_POST_INC:
				op = TOK_PRE_INC;
				break;
			case TOK_POST_DEC:
				op = TOK_PRE_DEC;
				break;
			}
		}
		/* We don't want an unary operator to cause recursive descent on the
		 * stack, because there can be many in a row and it could cause an
		 * operator to be evaluated before its argument is pushed onto the
		 * integer stack.
		 * But for binary operators, "apply" everything on the operator
		 * stack until we find an operator with a lesser priority than the
		 * one we have just extracted. If op is right-associative,
		 * then stop "applying" on the equal priority too.
		 * Left paren is given the lowest priority so it will never be
		 * "applied" in this way.
		 */
		prec = PREC(op);
		if ((prec > 0 && prec < UNARYPREC) || prec == SPEC_PREC) {
			/* not left paren or unary */
			if (lasttok != TOK_NUM) {
				/* binary op must be preceded by a num */
				goto err;
			}
			while (stackptr != stack) {
				operator prev_op = *--stackptr;
				if (op == TOK_RPAREN) {
					/* The algorithm employed here is simple: while we don't
					 * hit an open paren nor the bottom of the stack, pop
					 * tokens and apply them */
					if (prev_op == TOK_LPAREN) {
						/* Any operator directly after a
						 * close paren should consider itself binary */
						lasttok = TOK_NUM;
						goto next;
					}
				} else {
					operator prev_prec = PREC(prev_op);
					fix_assignment_prec(prec);
					fix_assignment_prec(prev_prec);
					if (prev_prec < prec
					 || (prev_prec == prec && is_right_associative(prec))
					) {
						stackptr++;
						break;
					}
				}
				errmsg = arith_apply(math_state, prev_op, numstack, &numstackptr);
				if (errmsg)
					goto err_with_custom_msg;
			}
			if (op == TOK_RPAREN)
				goto err;
		}

		/* Push this operator to the stack and remember it */
		*stackptr++ = lasttok = op;
 next: ;
	} /* while (1) */

 err:
	errmsg = "arithmetic syntax error";
 err_with_custom_msg:
	numstack->val = -1;
 ret:
	math_state->errmsg = errmsg;
	return numstack->val;
}

arith_t FAST_FUNC
arith(arith_state_t *math_state, const char *expr)
{
	math_state->errmsg = NULL;
	math_state->list_of_recursed_names = NULL;
	return evaluate_string(math_state, expr);
}

/*
 * Copyright (c) 1989, 1991, 1993, 1994
 *      The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Kenneth Almquist.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */