aboutsummaryrefslogtreecommitdiff
path: root/toys
diff options
context:
space:
mode:
authorRob Landley <rob@landley.net>2013-04-12 20:12:02 -0500
committerRob Landley <rob@landley.net>2013-04-12 20:12:02 -0500
commit18993e2f3af291eea7a175547862d057b7d83708 (patch)
tree4e3b4463da43e9720c351968403786ed58a0d908 /toys
parent4ffface11f7857683ddb1f935fb05809821458ab (diff)
downloadtoybox-18993e2f3af291eea7a175547862d057b7d83708.tar.gz
Convert tabs to spaces.
Diffstat (limited to 'toys')
-rw-r--r--toys/pending/xzcat.c4012
1 files changed, 2006 insertions, 2006 deletions
diff --git a/toys/pending/xzcat.c b/toys/pending/xzcat.c
index 5e96cf6f..5d69087c 100644
--- a/toys/pending/xzcat.c
+++ b/toys/pending/xzcat.c
@@ -47,9 +47,9 @@ config XZCAT
* so that is the default.
*/
enum xz_mode {
- XZ_SINGLE,
- XZ_PREALLOC,
- XZ_DYNALLOC
+ XZ_SINGLE,
+ XZ_PREALLOC,
+ XZ_DYNALLOC
};
/**
@@ -103,15 +103,15 @@ enum xz_mode {
* is used instead of XZ_BUF_ERROR.
*/
enum xz_ret {
- XZ_OK,
- XZ_STREAM_END,
- XZ_UNSUPPORTED_CHECK,
- XZ_MEM_ERROR,
- XZ_MEMLIMIT_ERROR,
- XZ_FORMAT_ERROR,
- XZ_OPTIONS_ERROR,
- XZ_DATA_ERROR,
- XZ_BUF_ERROR
+ XZ_OK,
+ XZ_STREAM_END,
+ XZ_UNSUPPORTED_CHECK,
+ XZ_MEM_ERROR,
+ XZ_MEMLIMIT_ERROR,
+ XZ_FORMAT_ERROR,
+ XZ_OPTIONS_ERROR,
+ XZ_DATA_ERROR,
+ XZ_BUF_ERROR
};
/**
@@ -131,13 +131,13 @@ enum xz_ret {
* the variables in_pos and out_pos are modified by the XZ code.
*/
struct xz_buf {
- const uint8_t *in;
- size_t in_pos;
- size_t in_size;
+ const uint8_t *in;
+ size_t in_pos;
+ size_t in_size;
- uint8_t *out;
- size_t out_pos;
- size_t out_size;
+ uint8_t *out;
+ size_t out_pos;
+ size_t out_size;
};
/**
@@ -239,14 +239,14 @@ static uint32_t xz_crc32_table[256];
uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
{
- crc = ~crc;
+ crc = ~crc;
- while (size != 0) {
- crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
- --size;
- }
+ while (size != 0) {
+ crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
+ --size;
+ }
- return ~crc;
+ return ~crc;
}
/*
@@ -257,21 +257,21 @@ static uint64_t xz_crc64_table[256];
void xz_crc64_init(void)
{
- const uint64_t poly = 0xC96C5795D7870F42ULL;
+ const uint64_t poly = 0xC96C5795D7870F42ULL;
- uint32_t i;
- uint32_t j;
- uint64_t r;
+ uint32_t i;
+ uint32_t j;
+ uint64_t r;
- for (i = 0; i < 256; ++i) {
- r = i;
- for (j = 0; j < 8; ++j)
- r = (r >> 1) ^ (poly & ~((r & 1) - 1));
+ for (i = 0; i < 256; ++i) {
+ r = i;
+ for (j = 0; j < 8; ++j)
+ r = (r >> 1) ^ (poly & ~((r & 1) - 1));
- xz_crc64_table[i] = r;
- }
+ xz_crc64_table[i] = r;
+ }
- return;
+ return;
}
/*
@@ -281,14 +281,14 @@ void xz_crc64_init(void)
*/
uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc)
{
- crc = ~crc;
+ crc = ~crc;
- while (size != 0) {
- crc = xz_crc64_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
- --size;
- }
+ while (size != 0) {
+ crc = xz_crc64_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
+ --size;
+ }
- return ~crc;
+ return ~crc;
}
// END xz.h
@@ -298,95 +298,95 @@ static uint8_t out[BUFSIZ];
void xzcat_main(void)
{
- struct xz_buf b;
- struct xz_dec *s;
- enum xz_ret ret;
- const char *msg;
-
- crc_init(xz_crc32_table, 1);
- xz_crc64_init();
-
- /*
- * Support up to 64 MiB dictionary. The actually needed memory
- * is allocated once the headers have been parsed.
- */
- s = xz_dec_init(XZ_DYNALLOC, 1 << 26);
- if (s == NULL) {
- msg = "Memory allocation failed\n";
- goto error;
- }
-
- b.in = in;
- b.in_pos = 0;
- b.in_size = 0;
- b.out = out;
- b.out_pos = 0;
- b.out_size = BUFSIZ;
-
- for (;;) {
- if (b.in_pos == b.in_size) {
- b.in_size = fread(in, 1, sizeof(in), stdin);
- b.in_pos = 0;
- }
-
- ret = xz_dec_run(s, &b);
-
- if (b.out_pos == sizeof(out)) {
- if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
- msg = "Write error\n";
- goto error;
- }
-
- b.out_pos = 0;
- }
-
- if (ret == XZ_OK)
- continue;
-
- if (ret == XZ_UNSUPPORTED_CHECK)
- continue;
-
- if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos
- || fclose(stdout)) {
- msg = "Write error\n";
- goto error;
- }
-
- switch (ret) {
- case XZ_STREAM_END:
- xz_dec_end(s);
- return;
-
- case XZ_MEM_ERROR:
- msg = "Memory allocation failed\n";
- goto error;
-
- case XZ_MEMLIMIT_ERROR:
- msg = "Memory usage limit reached\n";
- goto error;
-
- case XZ_FORMAT_ERROR:
- msg = "Not a .xz file\n";
- goto error;
-
- case XZ_OPTIONS_ERROR:
- msg = "Unsupported options in the .xz headers\n";
- goto error;
-
- case XZ_DATA_ERROR:
- case XZ_BUF_ERROR:
- msg = "File is corrupt\n";
- goto error;
-
- default:
- msg = "Bug!\n";
- goto error;
- }
- }
+ struct xz_buf b;
+ struct xz_dec *s;
+ enum xz_ret ret;
+ const char *msg;
+
+ crc_init(xz_crc32_table, 1);
+ xz_crc64_init();
+
+ /*
+ * Support up to 64 MiB dictionary. The actually needed memory
+ * is allocated once the headers have been parsed.
+ */
+ s = xz_dec_init(XZ_DYNALLOC, 1 << 26);
+ if (s == NULL) {
+ msg = "Memory allocation failed\n";
+ goto error;
+ }
+
+ b.in = in;
+ b.in_pos = 0;
+ b.in_size = 0;
+ b.out = out;
+ b.out_pos = 0;
+ b.out_size = BUFSIZ;
+
+ for (;;) {
+ if (b.in_pos == b.in_size) {
+ b.in_size = fread(in, 1, sizeof(in), stdin);
+ b.in_pos = 0;
+ }
+
+ ret = xz_dec_run(s, &b);
+
+ if (b.out_pos == sizeof(out)) {
+ if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
+ msg = "Write error\n";
+ goto error;
+ }
+
+ b.out_pos = 0;
+ }
+
+ if (ret == XZ_OK)
+ continue;
+
+ if (ret == XZ_UNSUPPORTED_CHECK)
+ continue;
+
+ if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos
+ || fclose(stdout)) {
+ msg = "Write error\n";
+ goto error;
+ }
+
+ switch (ret) {
+ case XZ_STREAM_END:
+ xz_dec_end(s);
+ return;
+
+ case XZ_MEM_ERROR:
+ msg = "Memory allocation failed\n";
+ goto error;
+
+ case XZ_MEMLIMIT_ERROR:
+ msg = "Memory usage limit reached\n";
+ goto error;
+
+ case XZ_FORMAT_ERROR:
+ msg = "Not a .xz file\n";
+ goto error;
+
+ case XZ_OPTIONS_ERROR:
+ msg = "Unsupported options in the .xz headers\n";
+ goto error;
+
+ case XZ_DATA_ERROR:
+ case XZ_BUF_ERROR:
+ msg = "File is corrupt\n";
+ goto error;
+
+ default:
+ msg = "Bug!\n";
+ goto error;
+ }
+ }
error:
- xz_dec_end(s);
- error_exit("%s", msg);
+ xz_dec_end(s);
+ error_exit("%s", msg);
}
// BEGIN xz_private.h
@@ -416,40 +416,40 @@ error:
#ifndef get_unaligned_le32
static inline uint32_t get_unaligned_le32(const uint8_t *buf)
{
- return (uint32_t)buf[0]
- | ((uint32_t)buf[1] << 8)
- | ((uint32_t)buf[2] << 16)
- | ((uint32_t)buf[3] << 24);
+ return (uint32_t)buf[0]
+ | ((uint32_t)buf[1] << 8)
+ | ((uint32_t)buf[2] << 16)
+ | ((uint32_t)buf[3] << 24);
}
#endif
#ifndef get_unaligned_be32
static inline uint32_t get_unaligned_be32(const uint8_t *buf)
{
- return (uint32_t)(buf[0] << 24)
- | ((uint32_t)buf[1] << 16)
- | ((uint32_t)buf[2] << 8)
- | (uint32_t)buf[3];
+ return (uint32_t)(buf[0] << 24)
+ | ((uint32_t)buf[1] << 16)
+ | ((uint32_t)buf[2] << 8)
+ | (uint32_t)buf[3];
}
#endif
#ifndef put_unaligned_le32
static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
{
- buf[0] = (uint8_t)val;
- buf[1] = (uint8_t)(val >> 8);
- buf[2] = (uint8_t)(val >> 16);
- buf[3] = (uint8_t)(val >> 24);
+ buf[0] = (uint8_t)val;
+ buf[1] = (uint8_t)(val >> 8);
+ buf[2] = (uint8_t)(val >> 16);
+ buf[3] = (uint8_t)(val >> 24);
}
#endif
#ifndef put_unaligned_be32
static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
{
- buf[0] = (uint8_t)(val >> 24);
- buf[1] = (uint8_t)(val >> 16);
- buf[2] = (uint8_t)(val >> 8);
- buf[3] = (uint8_t)val;
+ buf[0] = (uint8_t)(val >> 24);
+ buf[1] = (uint8_t)(val >> 16);
+ buf[2] = (uint8_t)(val >> 8);
+ buf[3] = (uint8_t)val;
}
#endif
@@ -506,9 +506,9 @@ static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
*/
#ifndef XZ_DEC_BCJ
# if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
- || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
- || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
- || defined(XZ_DEC_SPARC)
+ || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
+ || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
+ || defined(XZ_DEC_SPARC)
# define XZ_DEC_BCJ
# endif
#endif
@@ -518,7 +518,7 @@ static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
* before calling xz_dec_lzma2_run().
*/
struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
- uint32_t dict_max);
+ uint32_t dict_max);
/*
* Decode the LZMA2 properties (one byte) and reset the decoder. Return
@@ -527,11 +527,11 @@ struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
* decoder doesn't support.
*/
enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
- uint8_t props);
+ uint8_t props);
/* Decode raw LZMA2 stream from b->in to b->out. */
enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
- struct xz_buf *b);
+ struct xz_buf *b);
#ifdef XZ_DEC_BCJ
/*
@@ -554,8 +554,8 @@ enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
* must be called directly.
*/
enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
- struct xz_dec_lzma2 *lzma2,
- struct xz_buf *b);
+ struct xz_dec_lzma2 *lzma2,
+ struct xz_buf *b);
#endif
// END "xz_private.h"
@@ -571,62 +571,62 @@ enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
#ifdef XZ_DEC_BCJ
struct xz_dec_bcj {
- /* Type of the BCJ filter being used */
- enum {
- BCJ_X86 = 4, /* x86 or x86-64 */
- BCJ_POWERPC = 5, /* Big endian only */
- BCJ_IA64 = 6, /* Big or little endian */
- BCJ_ARM = 7, /* Little endian only */
- BCJ_ARMTHUMB = 8, /* Little endian only */
- BCJ_SPARC = 9 /* Big or little endian */
- } type;
-
- /*
- * Return value of the next filter in the chain. We need to preserve
- * this information across calls, because we must not call the next
- * filter anymore once it has returned XZ_STREAM_END.
- */
- enum xz_ret ret;
-
- /* True if we are operating in single-call mode. */
- int single_call;
-
- /*
- * Absolute position relative to the beginning of the uncompressed
- * data (in a single .xz Block). We care only about the lowest 32
- * bits so this doesn't need to be uint64_t even with big files.
- */
- uint32_t pos;
-
- /* x86 filter state */
- uint32_t x86_prev_mask;
-
- /* Temporary space to hold the variables from struct xz_buf */
- uint8_t *out;
- size_t out_pos;
- size_t out_size;
-
- struct {
- /* Amount of already filtered data in the beginning of buf */
- size_t filtered;
-
- /* Total amount of data currently stored in buf */
- size_t size;
-
- /*
- * Buffer to hold a mix of filtered and unfiltered data. This
- * needs to be big enough to hold Alignment + 2 * Look-ahead:
- *
- * Type Alignment Look-ahead
- * x86 1 4
- * PowerPC 4 0
- * IA-64 16 0
- * ARM 4 0
- * ARM-Thumb 2 2
- * SPARC 4 0
- */
- uint8_t buf[16];
- } temp;
+ /* Type of the BCJ filter being used */
+ enum {
+ BCJ_X86 = 4, /* x86 or x86-64 */
+ BCJ_POWERPC = 5, /* Big endian only */
+ BCJ_IA64 = 6, /* Big or little endian */
+ BCJ_ARM = 7, /* Little endian only */
+ BCJ_ARMTHUMB = 8, /* Little endian only */
+ BCJ_SPARC = 9 /* Big or little endian */
+ } type;
+
+ /*
+ * Return value of the next filter in the chain. We need to preserve
+ * this information across calls, because we must not call the next
+ * filter anymore once it has returned XZ_STREAM_END.
+ */
+ enum xz_ret ret;
+
+ /* True if we are operating in single-call mode. */
+ int single_call;
+
+ /*
+ * Absolute position relative to the beginning of the uncompressed
+ * data (in a single .xz Block). We care only about the lowest 32
+ * bits so this doesn't need to be uint64_t even with big files.
+ */
+ uint32_t pos;
+
+ /* x86 filter state */
+ uint32_t x86_prev_mask;
+
+ /* Temporary space to hold the variables from struct xz_buf */
+ uint8_t *out;
+ size_t out_pos;
+ size_t out_size;
+
+ struct {
+ /* Amount of already filtered data in the beginning of buf */
+ size_t filtered;
+
+ /* Total amount of data currently stored in buf */
+ size_t size;
+
+ /*
+ * Buffer to hold a mix of filtered and unfiltered data. This
+ * needs to be big enough to hold Alignment + 2 * Look-ahead:
+ *
+ * Type Alignment Look-ahead
+ * x86 1 4
+ * PowerPC 4 0
+ * IA-64 16 0
+ * ARM 4 0
+ * ARM-Thumb 2 2
+ * SPARC 4 0
+ */
+ uint8_t buf[16];
+ } temp;
};
#ifdef XZ_DEC_X86
@@ -636,255 +636,255 @@ struct xz_dec_bcj {
*/
static inline int bcj_x86_test_msbyte(uint8_t b)
{
- return b == 0x00 || b == 0xFF;
+ return b == 0x00 || b == 0xFF;
}
static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
- static const int mask_to_allowed_status[8]
- = { 1,1,1,0,1,0,0,0 };
-
- static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
-
- size_t i;
- size_t prev_pos = (size_t)-1;
- uint32_t prev_mask = s->x86_prev_mask;
- uint32_t src;
- uint32_t dest;
- uint32_t j;
- uint8_t b;
-
- if (size <= 4)
- return 0;
-
- size -= 4;
- for (i = 0; i < size; ++i) {
- if ((buf[i] & 0xFE) != 0xE8)
- continue;
-
- prev_pos = i - prev_pos;
- if (prev_pos > 3) {
- prev_mask = 0;
- } else {
- prev_mask = (prev_mask << (prev_pos - 1)) & 7;
- if (prev_mask != 0) {
- b = buf[i + 4 - mask_to_bit_num[prev_mask]];
- if (!mask_to_allowed_status[prev_mask]
- || bcj_x86_test_msbyte(b)) {
- prev_pos = i;
- prev_mask = (prev_mask << 1) | 1;
- continue;
- }
- }
- }
-
- prev_pos = i;
-
- if (bcj_x86_test_msbyte(buf[i + 4])) {
- src = get_unaligned_le32(buf + i + 1);
- for (;;) {
- dest = src - (s->pos + (uint32_t)i + 5);
- if (prev_mask == 0)
- break;
-
- j = mask_to_bit_num[prev_mask] * 8;
- b = (uint8_t)(dest >> (24 - j));
- if (!bcj_x86_test_msbyte(b))
- break;
-
- src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
- }
-
- dest &= 0x01FFFFFF;
- dest |= (uint32_t)0 - (dest & 0x01000000);
- put_unaligned_le32(dest, buf + i + 1);
- i += 4;
- } else {
- prev_mask = (prev_mask << 1) | 1;
- }
- }
-
- prev_pos = i - prev_pos;
- s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
- return i;
+ static const int mask_to_allowed_status[8]
+ = { 1,1,1,0,1,0,0,0 };
+
+ static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
+
+ size_t i;
+ size_t prev_pos = (size_t)-1;
+ uint32_t prev_mask = s->x86_prev_mask;
+ uint32_t src;
+ uint32_t dest;
+ uint32_t j;
+ uint8_t b;
+
+ if (size <= 4)
+ return 0;
+
+ size -= 4;
+ for (i = 0; i < size; ++i) {
+ if ((buf[i] & 0xFE) != 0xE8)
+ continue;
+
+ prev_pos = i - prev_pos;
+ if (prev_pos > 3) {
+ prev_mask = 0;
+ } else {
+ prev_mask = (prev_mask << (prev_pos - 1)) & 7;
+ if (prev_mask != 0) {
+ b = buf[i + 4 - mask_to_bit_num[prev_mask]];
+ if (!mask_to_allowed_status[prev_mask]
+ || bcj_x86_test_msbyte(b)) {
+ prev_pos = i;
+ prev_mask = (prev_mask << 1) | 1;
+ continue;
+ }
+ }
+ }
+
+ prev_pos = i;
+
+ if (bcj_x86_test_msbyte(buf[i + 4])) {
+ src = get_unaligned_le32(buf + i + 1);
+ for (;;) {
+ dest = src - (s->pos + (uint32_t)i + 5);
+ if (prev_mask == 0)
+ break;
+
+ j = mask_to_bit_num[prev_mask] * 8;
+ b = (uint8_t)(dest >> (24 - j));
+ if (!bcj_x86_test_msbyte(b))
+ break;
+
+ src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
+ }
+
+ dest &= 0x01FFFFFF;
+ dest |= (uint32_t)0 - (dest & 0x01000000);
+ put_unaligned_le32(dest, buf + i + 1);
+ i += 4;
+ } else {
+ prev_mask = (prev_mask << 1) | 1;
+ }
+ }
+
+ prev_pos = i - prev_pos;
+ s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
+ return i;
}
#endif
#ifdef XZ_DEC_POWERPC
static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
- size_t i;
- uint32_t instr;
+ size_t i;
+ uint32_t instr;
- for (i = 0; i + 4 <= size; i += 4) {
- instr = get_unaligned_be32(buf + i);
- if ((instr & 0xFC000003) == 0x48000001) {
- instr &= 0x03FFFFFC;
- instr -= s->pos + (uint32_t)i;
- instr &= 0x03FFFFFC;
- instr |= 0x48000001;
- put_unaligned_be32(instr, buf + i);
- }
- }
+ for (i = 0; i + 4 <= size; i += 4) {
+ instr = get_unaligned_be32(buf + i);
+ if ((instr & 0xFC000003) == 0x48000001) {
+ instr &= 0x03FFFFFC;
+ instr -= s->pos + (uint32_t)i;
+ instr &= 0x03FFFFFC;
+ instr |= 0x48000001;
+ put_unaligned_be32(instr, buf + i);
+ }
+ }
- return i;
+ return i;
}
#endif
#ifdef XZ_DEC_IA64
static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
- static const uint8_t branch_table[32] = {
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 4, 4, 6, 6, 0, 0, 7, 7,
- 4, 4, 0, 0, 4, 4, 0, 0
- };
-
- /*
- * The local variables take a little bit stack space, but it's less
- * than what LZMA2 decoder takes, so it doesn't make sense to reduce
- * stack usage here without doing that for the LZMA2 decoder too.
- */
-
- /* Loop counters */
- size_t i;
- size_t j;
-
- /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
- uint32_t slot;
-
- /* Bitwise offset of the instruction indicated by slot */
- uint32_t bit_pos;
-
- /* bit_pos split into byte and bit parts */
- uint32_t byte_pos;
- uint32_t bit_res;
-
- /* Address part of an instruction */
- uint32_t addr;
-
- /* Mask used to detect which instructions to convert */
- uint32_t mask;
-
- /* 41-bit instruction stored somewhere in the lowest 48 bits */
- uint64_t instr;
-
- /* Instruction normalized with bit_res for easier manipulation */
- uint64_t norm;
-
- for (i = 0; i + 16 <= size; i += 16) {
- mask = branch_table[buf[i] & 0x1F];
- for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
- if (((mask >> slot) & 1) == 0)
- continue;
-
- byte_pos = bit_pos >> 3;
- bit_res = bit_pos & 7;
- instr = 0;
- for (j = 0; j < 6; ++j)
- instr |= (uint64_t)(buf[i + j + byte_pos])
- << (8 * j);
-
- norm = instr >> bit_res;
-
- if (((norm >> 37) & 0x0F) == 0x05
- && ((norm >> 9) & 0x07) == 0) {
- addr = (norm >> 13) & 0x0FFFFF;
- addr |= ((uint32_t)(norm >> 36) & 1) << 20;
- addr <<= 4;
- addr -= s->pos + (uint32_t)i;
- addr >>= 4;
-
- norm &= ~((uint64_t)0x8FFFFF << 13);
- norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
- norm |= (uint64_t)(addr & 0x100000)
- << (36 - 20);
-
- instr &= (1 << bit_res) - 1;
- instr |= norm << bit_res;
-
- for (j = 0; j < 6; j++)
- buf[i + j + byte_pos]
- = (uint8_t)(instr >> (8 * j));
- }
- }
- }
-
- return i;
+ static const uint8_t branch_table[32] = {
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 4, 4, 6, 6, 0, 0, 7, 7,
+ 4, 4, 0, 0, 4, 4, 0, 0
+ };
+
+ /*
+ * The local variables take a little bit stack space, but it's less
+ * than what LZMA2 decoder takes, so it doesn't make sense to reduce
+ * stack usage here without doing that for the LZMA2 decoder too.
+ */
+
+ /* Loop counters */
+ size_t i;
+ size_t j;
+
+ /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
+ uint32_t slot;
+
+ /* Bitwise offset of the instruction indicated by slot */
+ uint32_t bit_pos;
+
+ /* bit_pos split into byte and bit parts */
+ uint32_t byte_pos;
+ uint32_t bit_res;
+
+ /* Address part of an instruction */
+ uint32_t addr;
+
+ /* Mask used to detect which instructions to convert */
+ uint32_t mask;
+
+ /* 41-bit instruction stored somewhere in the lowest 48 bits */
+ uint64_t instr;
+
+ /* Instruction normalized with bit_res for easier manipulation */
+ uint64_t norm;
+
+ for (i = 0; i + 16 <= size; i += 16) {
+ mask = branch_table[buf[i] & 0x1F];
+ for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
+ if (((mask >> slot) & 1) == 0)
+ continue;
+
+ byte_pos = bit_pos >> 3;
+ bit_res = bit_pos & 7;
+ instr = 0;
+ for (j = 0; j < 6; ++j)
+ instr |= (uint64_t)(buf[i + j + byte_pos])
+ << (8 * j);
+
+ norm = instr >> bit_res;
+
+ if (((norm >> 37) & 0x0F) == 0x05
+ && ((norm >> 9) & 0x07) == 0) {
+ addr = (norm >> 13) & 0x0FFFFF;
+ addr |= ((uint32_t)(norm >> 36) & 1) << 20;
+ addr <<= 4;
+ addr -= s->pos + (uint32_t)i;
+ addr >>= 4;
+
+ norm &= ~((uint64_t)0x8FFFFF << 13);
+ norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
+ norm |= (uint64_t)(addr & 0x100000)
+ << (36 - 20);
+
+ instr &= (1 << bit_res) - 1;
+ instr |= norm << bit_res;
+
+ for (j = 0; j < 6; j++)
+ buf[i + j + byte_pos]
+ = (uint8_t)(instr >> (8 * j));
+ }
+ }
+ }
+
+ return i;
}
#endif
#ifdef XZ_DEC_ARM
static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
- size_t i;
- uint32_t addr;
+ size_t i;
+ uint32_t addr;
- for (i = 0; i + 4 <= size; i += 4) {
- if (buf[i + 3] == 0xEB) {
- addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
- | ((uint32_t)buf[i + 2] << 16);
- addr <<= 2;
- addr -= s->pos + (uint32_t)i + 8;
- addr >>= 2;
- buf[i] = (uint8_t)addr;
- buf[i + 1] = (uint8_t)(addr >> 8);
- buf[i + 2] = (uint8_t)(addr >> 16);
- }
- }
+ for (i = 0; i + 4 <= size; i += 4) {
+ if (buf[i + 3] == 0xEB) {
+ addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
+ | ((uint32_t)buf[i + 2] << 16);
+ addr <<= 2;
+ addr -= s->pos + (uint32_t)i + 8;
+ addr >>= 2;
+ buf[i] = (uint8_t)addr;
+ buf[i + 1] = (uint8_t)(addr >> 8);
+ buf[i + 2] = (uint8_t)(addr >> 16);
+ }
+ }
- return i;
+ return i;
}
#endif
#ifdef XZ_DEC_ARMTHUMB
static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
- size_t i;
- uint32_t addr;
-
- for (i = 0; i + 4 <= size; i += 2) {
- if ((buf[i + 1] & 0xF8) == 0xF0
- && (buf[i + 3] & 0xF8) == 0xF8) {
- addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
- | ((uint32_t)buf[i] << 11)
- | (((uint32_t)buf[i + 3] & 0x07) << 8)
- | (uint32_t)buf[i + 2];
- addr <<= 1;
- addr -= s->pos + (uint32_t)i + 4;
- addr >>= 1;
- buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
- buf[i] = (uint8_t)(addr >> 11);
- buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
- buf[i + 2] = (uint8_t)addr;
- i += 2;
- }
- }
-
- return i;
+ size_t i;
+ uint32_t addr;
+
+ for (i = 0; i + 4 <= size; i += 2) {
+ if ((buf[i + 1] & 0xF8) == 0xF0
+ && (buf[i + 3] & 0xF8) == 0xF8) {
+ addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
+ | ((uint32_t)buf[i] << 11)
+ | (((uint32_t)buf[i + 3] & 0x07) << 8)
+ | (uint32_t)buf[i + 2];
+ addr <<= 1;
+ addr -= s->pos + (uint32_t)i + 4;
+ addr >>= 1;
+ buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
+ buf[i] = (uint8_t)(addr >> 11);
+ buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
+ buf[i + 2] = (uint8_t)addr;
+ i += 2;
+ }
+ }
+
+ return i;
}
#endif
#ifdef XZ_DEC_SPARC
static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
- size_t i;
- uint32_t instr;
+ size_t i;
+ uint32_t instr;
- for (i = 0; i + 4 <= size; i += 4) {
- instr = get_unaligned_be32(buf + i);
- if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
- instr <<= 2;
- instr -= s->pos + (uint32_t)i;
- instr >>= 2;
- instr = ((uint32_t)0x40000000 - (instr & 0x400000))
- | 0x40000000 | (instr & 0x3FFFFF);
- put_unaligned_be32(instr, buf + i);
- }
- }
+ for (i = 0; i + 4 <= size; i += 4) {
+ instr = get_unaligned_be32(buf + i);
+ if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
+ instr <<= 2;
+ instr -= s->pos + (uint32_t)i;
+ instr >>= 2;
+ instr = ((uint32_t)0x40000000 - (instr & 0x400000))
+ | 0x40000000 | (instr & 0x3FFFFF);
+ put_unaligned_be32(instr, buf + i);
+ }
+ }
- return i;
+ return i;
}
#endif
@@ -897,52 +897,52 @@ static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
* avoid pointers to static data (at least on x86).
*/
static void bcj_apply(struct xz_dec_bcj *s,
- uint8_t *buf, size_t *pos, size_t size)
+ uint8_t *buf, size_t *pos, size_t size)
{
- size_t filtered;
+ size_t filtered;
- buf += *pos;
- size -= *pos;
+ buf += *pos;
+ size -= *pos;
- switch (s->type) {
+ switch (s->type) {
#ifdef XZ_DEC_X86
- case BCJ_X86:
- filtered = bcj_x86(s, buf, size);
- break;
+ case BCJ_X86:
+ filtered = bcj_x86(s, buf, size);
+ break;
#endif
#ifdef XZ_DEC_POWERPC
- case BCJ_POWERPC:
- filtered = bcj_powerpc(s, buf, size);
- break;
+ case BCJ_POWERPC:
+ filtered = bcj_powerpc(s, buf, size);
+ break;
#endif
#ifdef XZ_DEC_IA64
- case BCJ_IA64:
- filtered = bcj_ia64(s, buf, size);
- break;
+ case BCJ_IA64:
+ filtered = bcj_ia64(s, buf, size);
+ break;
#endif
#ifdef XZ_DEC_ARM
- case BCJ_ARM:
- filtered = bcj_arm(s, buf, size);
- break;
+ case BCJ_ARM:
+ filtered = bcj_arm(s, buf, size);
+ break;
#endif
#ifdef XZ_DEC_ARMTHUMB
- case BCJ_ARMTHUMB:
- filtered = bcj_armthumb(s, buf, size);
- break;
+ case BCJ_ARMTHUMB:
+ filtered = bcj_armthumb(s, buf, size);
+ break;
#endif
#ifdef XZ_DEC_SPARC
- case BCJ_SPARC:
- filtered = bcj_sparc(s, buf, size);
- break;
+ case BCJ_SPARC:
+ filtered = bcj_sparc(s, buf, size);
+ break;
#endif
- default:
- /* Never reached but silence compiler warnings. */
- filtered = 0;
- break;
- }
+ default:
+ /* Never reached but silence compiler warnings. */
+ filtered = 0;
+ break;
+ }
- *pos += filtered;
- s->pos += filtered;
+ *pos += filtered;
+ s->pos += filtered;
}
/*
@@ -952,15 +952,15 @@ static void bcj_apply(struct xz_dec_bcj *s,
*/
static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
{
- size_t copy_size;
+ size_t copy_size;
- copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
- memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
- b->out_pos += copy_size;
+ copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
+ memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
+ b->out_pos += copy_size;
- s->temp.filtered -= copy_size;
- s->temp.size -= copy_size;
- memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
+ s->temp.filtered -= copy_size;
+ s->temp.size -= copy_size;
+ memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
}
/*
@@ -969,160 +969,160 @@ static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
* some buffering.
*/
enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
- struct xz_dec_lzma2 *lzma2,
- struct xz_buf *b)
-{
- size_t out_start;
-
- /*
- * Flush pending already filtered data to the output buffer. Return
- * immediatelly if we couldn't flush everything, or if the next
- * filter in the chain had already returned XZ_STREAM_END.
- */
- if (s->temp.filtered > 0) {
- bcj_flush(s, b);
- if (s->temp.filtered > 0)
- return XZ_OK;
-
- if (s->ret == XZ_STREAM_END)
- return XZ_STREAM_END;
- }
-
- /*
- * If we have more output space than what is currently pending in
- * temp, copy the unfiltered data from temp to the output buffer
- * and try to fill the output buffer by decoding more data from the
- * next filter in the chain. Apply the BCJ filter on the new data
- * in the output buffer. If everything cannot be filtered, copy it
- * to temp and rewind the output buffer position accordingly.
- *
- * This needs to be always run when temp.size == 0 to handle a special
- * case where the output buffer is full and the next filter has no
- * more output coming but hasn't returned XZ_STREAM_END yet.
- */
- if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
- out_start = b->out_pos;
- memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
- b->out_pos += s->temp.size;
-
- s->ret = xz_dec_lzma2_run(lzma2, b);
- if (s->ret != XZ_STREAM_END
- && (s->ret != XZ_OK || s->single_call))
- return s->ret;
-
- bcj_apply(s, b->out, &out_start, b->out_pos);
-
- /*
- * As an exception, if the next filter returned XZ_STREAM_END,
- * we can do that too, since the last few bytes that remain
- * unfiltered are meant to remain unfiltered.
- */
- if (s->ret == XZ_STREAM_END)
- return XZ_STREAM_END;
-
- s->temp.size = b->out_pos - out_start;
- b->out_pos -= s->temp.size;
- memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
-
- /*
- * If there wasn't enough input to the next filter to fill
- * the output buffer with unfiltered data, there's no point
- * to try decoding more data to temp.
- */
- if (b->out_pos + s->temp.size < b->out_size)
- return XZ_OK;
- }
-
- /*
- * We have unfiltered data in temp. If the output buffer isn't full
- * yet, try to fill the temp buffer by decoding more data from the
- * next filter. Apply the BCJ filter on temp. Then we hopefully can
- * fill the actual output buffer by copying filtered data from temp.
- * A mix of filtered and unfiltered data may be left in temp; it will
- * be taken care on the next call to this function.
- */
- if (b->out_pos < b->out_size) {
- /* Make b->out{,_pos,_size} temporarily point to s->temp. */
- s->out = b->out;
- s->out_pos = b->out_pos;
- s->out_size = b->out_size;
- b->out = s->temp.buf;
- b->out_pos = s->temp.size;
- b->out_size = sizeof(s->temp.buf);
-
- s->ret = xz_dec_lzma2_run(lzma2, b);
-
- s->temp.size = b->out_pos;
- b->out = s->out;
- b->out_pos = s->out_pos;
- b->out_size = s->out_size;
-
- if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
- return s->ret;
-
- bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
-
- /*
- * If the next filter returned XZ_STREAM_END, we mark that
- * everything is filtered, since the last unfiltered bytes
- * of the stream are meant to be left as is.
- */
- if (s->ret == XZ_STREAM_END)
- s->temp.filtered = s->temp.size;
-
- bcj_flush(s, b);
- if (s->temp.filtered > 0)
- return XZ_OK;
- }
-
- return s->ret;
+ struct xz_dec_lzma2 *lzma2,
+ struct xz_buf *b)
+{
+ size_t out_start;
+
+ /*
+ * Flush pending already filtered data to the output buffer. Return
+ * immediatelly if we couldn't flush everything, or if the next
+ * filter in the chain had already returned XZ_STREAM_END.
+ */
+ if (s->temp.filtered > 0) {
+ bcj_flush(s, b);
+ if (s->temp.filtered > 0)
+ return XZ_OK;
+
+ if (s->ret == XZ_STREAM_END)
+ return XZ_STREAM_END;
+ }
+
+ /*
+ * If we have more output space than what is currently pending in
+ * temp, copy the unfiltered data from temp to the output buffer
+ * and try to fill the output buffer by decoding more data from the
+ * next filter in the chain. Apply the BCJ filter on the new data
+ * in the output buffer. If everything cannot be filtered, copy it
+ * to temp and rewind the output buffer position accordingly.
+ *
+ * This needs to be always run when temp.size == 0 to handle a special
+ * case where the output buffer is full and the next filter has no
+ * more output coming but hasn't returned XZ_STREAM_END yet.
+ */
+ if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
+ out_start = b->out_pos;
+ memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
+ b->out_pos += s->temp.size;
+
+ s->ret = xz_dec_lzma2_run(lzma2, b);
+ if (s->ret != XZ_STREAM_END
+ && (s->ret != XZ_OK || s->single_call))
+ return s->ret;
+
+ bcj_apply(s, b->out, &out_start, b->out_pos);
+
+ /*
+ * As an exception, if the next filter returned XZ_STREAM_END,
+ * we can do that too, since the last few bytes that remain
+ * unfiltered are meant to remain unfiltered.
+ */
+ if (s->ret == XZ_STREAM_END)
+ return XZ_STREAM_END;
+
+ s->temp.size = b->out_pos - out_start;
+ b->out_pos -= s->temp.size;
+ memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
+
+ /*
+ * If there wasn't enough input to the next filter to fill
+ * the output buffer with unfiltered data, there's no point
+ * to try decoding more data to temp.
+ */
+ if (b->out_pos + s->temp.size < b->out_size)
+ return XZ_OK;
+ }
+
+ /*
+ * We have unfiltered data in temp. If the output buffer isn't full
+ * yet, try to fill the temp buffer by decoding more data from the
+ * next filter. Apply the BCJ filter on temp. Then we hopefully can
+ * fill the actual output buffer by copying filtered data from temp.
+ * A mix of filtered and unfiltered data may be left in temp; it will
+ * be taken care on the next call to this function.
+ */
+ if (b->out_pos < b->out_size) {
+ /* Make b->out{,_pos,_size} temporarily point to s->temp. */
+ s->out = b->out;
+ s->out_pos = b->out_pos;
+ s->out_size = b->out_size;
+ b->out = s->temp.buf;
+ b->out_pos = s->temp.size;
+ b->out_size = sizeof(s->temp.buf);
+
+ s->ret = xz_dec_lzma2_run(lzma2, b);
+
+ s->temp.size = b->out_pos;
+ b->out = s->out;
+ b->out_pos = s->out_pos;
+ b->out_size = s->out_size;
+
+ if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
+ return s->ret;
+
+ bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
+
+ /*
+ * If the next filter returned XZ_STREAM_END, we mark that
+ * everything is filtered, since the last unfiltered bytes
+ * of the stream are meant to be left as is.
+ */
+ if (s->ret == XZ_STREAM_END)
+ s->temp.filtered = s->temp.size;
+
+ bcj_flush(s, b);
+ if (s->temp.filtered > 0)
+ return XZ_OK;
+ }
+
+ return s->ret;
}
struct xz_dec_bcj *xz_dec_bcj_create(int single_call)
{
- struct xz_dec_bcj *s = malloc(sizeof(*s));
- if (s != NULL)
- s->single_call = single_call;
+ struct xz_dec_bcj *s = malloc(sizeof(*s));
+ if (s != NULL)
+ s->single_call = single_call;
- return s;
+ return s;
}
enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
{
- switch (id) {
+ switch (id) {
#ifdef XZ_DEC_X86
- case BCJ_X86:
+ case BCJ_X86:
#endif
#ifdef XZ_DEC_POWERPC
- case BCJ_POWERPC:
+ case BCJ_POWERPC:
#endif
#ifdef XZ_DEC_IA64
- case BCJ_IA64:
+ case BCJ_IA64:
#endif
#ifdef XZ_DEC_ARM
- case BCJ_ARM:
+ case BCJ_ARM:
#endif
#ifdef XZ_DEC_ARMTHUMB
- case BCJ_ARMTHUMB:
+ case BCJ_ARMTHUMB:
#endif
#ifdef XZ_DEC_SPARC
- case BCJ_SPARC:
+ case BCJ_SPARC:
#endif
- break;
+ break;
- default:
- /* Unsupported Filter ID */
- return XZ_OPTIONS_ERROR;
- }
+ default:
+ /* Unsupported Filter ID */
+ return XZ_OPTIONS_ERROR;
+ }
- s->type = id;
- s->ret = XZ_OK;
- s->pos = 0;
- s->x86_prev_mask = 0;
- s->temp.filtered = 0;
- s->temp.size = 0;
+ s->type = id;
+ s->ret = XZ_OK;
+ s->pos = 0;
+ s->x86_prev_mask = 0;
+ s->temp.filtered = 0;
+ s->temp.size = 0;
- return XZ_OK;
+ return XZ_OK;
}
#endif
@@ -1167,18 +1167,18 @@ enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
* either short or long repeated match, and NONLIT means any non-literal.
*/
enum lzma_state {
- STATE_LIT_LIT,
- STATE_MATCH_LIT_LIT,
- STATE_REP_LIT_LIT,
- STATE_SHORTREP_LIT_LIT,
- STATE_MATCH_LIT,
- STATE_REP_LIT,
- STATE_SHORTREP_LIT,
- STATE_LIT_MATCH,
- STATE_LIT_LONGREP,
- STATE_LIT_SHORTREP,
- STATE_NONLIT_MATCH,
- STATE_NONLIT_REP
+ STATE_LIT_LIT,
+ STATE_MATCH_LIT_LIT,
+ STATE_REP_LIT_LIT,
+ STATE_SHORTREP_LIT_LIT,
+ STATE_MATCH_LIT,
+ STATE_REP_LIT,
+ STATE_SHORTREP_LIT,
+ STATE_LIT_MATCH,
+ STATE_LIT_LONGREP,
+ STATE_LIT_SHORTREP,
+ STATE_NONLIT_MATCH,
+ STATE_NONLIT_REP
};
/* Total number of states */
@@ -1190,36 +1190,36 @@ enum lzma_state {
/* Indicate that the latest symbol was a literal. */
static inline void lzma_state_literal(enum lzma_state *state)
{
- if (*state <= STATE_SHORTREP_LIT_LIT)
- *state = STATE_LIT_LIT;
- else if (*state <= STATE_LIT_SHORTREP)
- *state -= 3;
- else
- *state -= 6;
+ if (*state <= STATE_SHORTREP_LIT_LIT)
+ *state = STATE_LIT_LIT;
+ else if (*state <= STATE_LIT_SHORTREP)
+ *state -= 3;
+ else
+ *state -= 6;
}
/* Indicate that the latest symbol was a match. */
static inline void lzma_state_match(enum lzma_state *state)
{
- *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
+ *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
}
/* Indicate that the latest state was a long repeated match. */
static inline void lzma_state_long_rep(enum lzma_state *state)
{
- *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
+ *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
}
/* Indicate that the latest symbol was a short match. */
static inline void lzma_state_short_rep(enum lzma_state *state)
{
- *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
+ *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
}
/* Test if the previous symbol was a literal. */
static inline int lzma_state_is_literal(enum lzma_state state)
{
- return state < LIT_STATES;
+ return state < LIT_STATES;
}
/* Each literal coder is divided in three sections:
@@ -1273,8 +1273,8 @@ static inline int lzma_state_is_literal(enum lzma_state state)
*/
static inline uint32_t lzma_get_dist_state(uint32_t len)
{
- return len < DIST_STATES + MATCH_LEN_MIN
- ? len - MATCH_LEN_MIN : DIST_STATES - 1;
+ return len < DIST_STATES + MATCH_LEN_MIN
+ ? len - MATCH_LEN_MIN : DIST_STATES - 1;
}
/*
@@ -1362,237 +1362,237 @@ static inline uint32_t lzma_get_dist_state(uint32_t len)
* buffer directly.
*/
struct dictionary {
- /* Beginning of the history buffer */
- uint8_t *buf;
-
- /* Old position in buf (before decoding more data) */
- size_t start;
-
- /* Position in buf */
- size_t pos;
-
- /*
- * How full dictionary is. This is used to detect corrupt input that
- * would read beyond the beginning of the uncompressed stream.
- */
- size_t full;
-
- /* Write limit; we don't write to buf[limit] or later bytes. */
- size_t limit;
-
- /*
- * End of the dictionary buffer. In multi-call mode, this is
- * the same as the dictionary size. In single-call mode, this
- * indicates the size of the output buffer.
- */
- size_t end;
-
- /*
- * Size of the dictionary as specified in Block Header. This is used
- * together with "full" to detect corrupt input that would make us
- * read beyond the beginning of the uncompressed stream.
- */
- uint32_t size;
-
- /*
- * Maximum allowed dictionary size in multi-call mode.
- * This is ignored in single-call mode.
- */
- uint32_t size_max;
-
- /*
- * Amount of memory currently allocated for the dictionary.
- * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
- * size_max is always the same as the allocated size.)
- */
- uint32_t allocated;
-
- /* Operation mode */
- enum xz_mode mode;
+ /* Beginning of the history buffer */
+ uint8_t *buf;
+
+ /* Old position in buf (before decoding more data) */
+ size_t start;
+
+ /* Position in buf */
+ size_t pos;
+
+ /*
+ * How full dictionary is. This is used to detect corrupt input that
+ * would read beyond the beginning of the uncompressed stream.
+ */
+ size_t full;
+
+ /* Write limit; we don't write to buf[limit] or later bytes. */
+ size_t limit;
+
+ /*
+ * End of the dictionary buffer. In multi-call mode, this is
+ * the same as the dictionary size. In single-call mode, this
+ * indicates the size of the output buffer.
+ */
+ size_t end;
+
+ /*
+ * Size of the dictionary as specified in Block Header. This is used
+ * together with "full" to detect corrupt input that would make us
+ * read beyond the beginning of the uncompressed stream.
+ */
+ uint32_t size;
+
+ /*
+ * Maximum allowed dictionary size in multi-call mode.
+ * This is ignored in single-call mode.
+ */
+ uint32_t size_max;
+
+ /*
+ * Amount of memory currently allocated for the dictionary.
+ * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
+ * size_max is always the same as the allocated size.)
+ */
+ uint32_t allocated;
+
+ /* Operation mode */
+ enum xz_mode mode;
};
/* Range decoder */
struct rc_dec {
- uint32_t range;
- uint32_t code;
-
- /*
- * Number of initializing bytes remaining to be read
- * by rc_read_init().
- */
- uint32_t init_bytes_left;
-
- /*
- * Buffer from which we read our input. It can be either
- * temp.buf or the caller-provided input buffer.
- */
- const uint8_t *in;
- size_t in_pos;
- size_t in_limit;
+ uint32_t range;
+ uint32_t code;
+
+ /*
+ * Number of initializing bytes remaining to be read
+ * by rc_read_init().
+ */
+ uint32_t init_bytes_left;
+
+ /*
+ * Buffer from which we read our input. It can be either
+ * temp.buf or the caller-provided input buffer.
+ */
+ const uint8_t *in;
+ size_t in_pos;
+ size_t in_limit;
};
/* Probabilities for a length decoder. */
struct lzma_len_dec {
- /* Probability of match length being at least 10 */
- uint16_t choice;
+ /* Probability of match length being at least 10 */
+ uint16_t choice;
- /* Probability of match length being at least 18 */
- uint16_t choice2;
+ /* Probability of match length being at least 18 */
+ uint16_t choice2;
- /* Probabilities for match lengths 2-9 */
- uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
+ /* Probabilities for match lengths 2-9 */
+ uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
- /* Probabilities for match lengths 10-17 */
- uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
+ /* Probabilities for match lengths 10-17 */
+ uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
- /* Probabilities for match lengths 18-273 */
- uint16_t high[LEN_HIGH_SYMBOLS];
+ /* Probabilities for match lengths 18-273 */
+ uint16_t high[LEN_HIGH_SYMBOLS];
};
struct lzma_dec {
- /* Distances of latest four matches */
- uint32_t rep0;
- uint32_t rep1;
- uint32_t rep2;
- uint32_t rep3;
-
- /* Types of the most recently seen LZMA symbols */
- enum lzma_state state;
-
- /*
- * Length of a match. This is updated so that dict_repeat can
- * be called again to finish repeating the whole match.
- */
- uint32_t len;
-
- /*
- * LZMA properties or related bit masks (number of literal
- * context bits, a mask dervied from the number of literal
- * position bits, and a mask dervied from the number
- * position bits)
- */
- uint32_t lc;
- uint32_t literal_pos_mask; /* (1 << lp) - 1 */
- uint32_t pos_mask; /* (1 << pb) - 1 */
-
- /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
- uint16_t is_match[STATES][POS_STATES_MAX];
-
- /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
- uint16_t is_rep[STATES];
-
- /*
- * If 0, distance of a repeated match is rep0.
- * Otherwise check is_rep1.
- */
- uint16_t is_rep0[STATES];
-
- /*
- * If 0, distance of a repeated match is rep1.
- * Otherwise check is_rep2.
- */
- uint16_t is_rep1[STATES];
-
- /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
- uint16_t is_rep2[STATES];
-
- /*
- * If 1, the repeated match has length of one byte. Otherwise
- * the length is decoded from rep_len_decoder.
- */
- uint16_t is_rep0_long[STATES][POS_STATES_MAX];
-
- /*
- * Probability tree for the highest two bits of the match
- * distance. There is a separate probability tree for match
- * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
- */
- uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
-
- /*
- * Probility trees for additional bits for match distance
- * when the distance is in the range [4, 127].
- */
- uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
-
- /*
- * Probability tree for the lowest four bits of a match
- * distance that is equal to or greater than 128.
- */
- uint16_t dist_align[ALIGN_SIZE];
-
- /* Length of a normal match */
- struct lzma_len_dec match_len_dec;
-
- /* Length of a repeated match */
- struct lzma_len_dec rep_len_dec;
-
- /* Probabilities of literals */
- uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
+ /* Distances of latest four matches */
+ uint32_t rep0;
+ uint32_t rep1;
+ uint32_t rep2;
+ uint32_t rep3;
+
+ /* Types of the most recently seen LZMA symbols */
+ enum lzma_state state;
+
+ /*
+ * Length of a match. This is updated so that dict_repeat can
+ * be called again to finish repeating the whole match.
+ */
+ uint32_t len;
+
+ /*
+ * LZMA properties or related bit masks (number of literal
+ * context bits, a mask dervied from the number of literal
+ * position bits, and a mask dervied from the number
+ * position bits)
+ */
+ uint32_t lc;
+ uint32_t literal_pos_mask; /* (1 << lp) - 1 */
+ uint32_t pos_mask; /* (1 << pb) - 1 */
+
+ /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
+ uint16_t is_match[STATES][POS_STATES_MAX];
+
+ /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
+ uint16_t is_rep[STATES];
+
+ /*
+ * If 0, distance of a repeated match is rep0.
+ * Otherwise check is_rep1.
+ */
+ uint16_t is_rep0[STATES];
+
+ /*
+ * If 0, distance of a repeated match is rep1.
+ * Otherwise check is_rep2.
+ */
+ uint16_t is_rep1[STATES];
+
+ /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
+ uint16_t is_rep2[STATES];
+
+ /*
+ * If 1, the repeated match has length of one byte. Otherwise
+ * the length is decoded from rep_len_decoder.
+ */
+ uint16_t is_rep0_long[STATES][POS_STATES_MAX];
+
+ /*
+ * Probability tree for the highest two bits of the match
+ * distance. There is a separate probability tree for match
+ * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
+ */
+ uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
+
+ /*
+ * Probility trees for additional bits for match distance
+ * when the distance is in the range [4, 127].
+ */
+ uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
+
+ /*
+ * Probability tree for the lowest four bits of a match
+ * distance that is equal to or greater than 128.
+ */
+ uint16_t dist_align[ALIGN_SIZE];
+
+ /* Length of a normal match */
+ struct lzma_len_dec match_len_dec;
+
+ /* Length of a repeated match */
+ struct lzma_len_dec rep_len_dec;
+
+ /* Probabilities of literals */
+ uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
};
struct lzma2_dec {
- /* Position in xz_dec_lzma2_run(). */
- enum lzma2_seq {
- SEQ_CONTROL,
- SEQ_UNCOMPRESSED_1,
- SEQ_UNCOMPRESSED_2,
- SEQ_COMPRESSED_0,
- SEQ_COMPRESSED_1,
- SEQ_PROPERTIES,
- SEQ_LZMA_PREPARE,
- SEQ_LZMA_RUN,
- SEQ_COPY
- } sequence;
-
- /* Next position after decoding the compressed size of the chunk. */
- enum lzma2_seq next_sequence;
-
- /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
- uint32_t uncompressed;
-
- /*
- * Compressed size of LZMA chunk or compressed/uncompressed
- * size of uncompressed chunk (64 KiB at maximum)
- */
- uint32_t compressed;
-
- /*
- * True if dictionary reset is needed. This is false before
- * the first chunk (LZMA or uncompressed).
- */
- int need_dict_reset;
-
- /*
- * True if new LZMA properties are needed. This is false
- * before the first LZMA chunk.
- */
- int need_props;
+ /* Position in xz_dec_lzma2_run(). */
+ enum lzma2_seq {
+ SEQ_CONTROL,
+ SEQ_UNCOMPRESSED_1,
+ SEQ_UNCOMPRESSED_2,
+ SEQ_COMPRESSED_0,
+ SEQ_COMPRESSED_1,
+ SEQ_PROPERTIES,
+ SEQ_LZMA_PREPARE,
+ SEQ_LZMA_RUN,
+ SEQ_COPY
+ } sequence;
+
+ /* Next position after decoding the compressed size of the chunk. */
+ enum lzma2_seq next_sequence;
+
+ /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
+ uint32_t uncompressed;
+
+ /*
+ * Compressed size of LZMA chunk or compressed/uncompressed
+ * size of uncompressed chunk (64 KiB at maximum)
+ */
+ uint32_t compressed;
+
+ /*
+ * True if dictionary reset is needed. This is false before
+ * the first chunk (LZMA or uncompressed).
+ */
+ int need_dict_reset;
+
+ /*
+ * True if new LZMA properties are needed. This is false
+ * before the first LZMA chunk.
+ */
+ int need_props;
};
struct xz_dec_lzma2 {
- /*
- * The order below is important on x86 to reduce code size and
- * it shouldn't hurt on other platforms. Everything up to and
- * including lzma.pos_mask are in the first 128 bytes on x86-32,
- * which allows using smaller instructions to access those
- * variables. On x86-64, fewer variables fit into the first 128
- * bytes, but this is still the best order without sacrificing
- * the readability by splitting the structures.
- */
- struct rc_dec rc;
- struct dictionary dict;
- struct lzma2_dec lzma2;
- struct lzma_dec lzma;
-
- /*
- * Temporary buffer which holds small number of input bytes between
- * decoder calls. See lzma2_lzma() for details.
- */
- struct {
- uint32_t size;
- uint8_t buf[3 * LZMA_IN_REQUIRED];
- } temp;
+ /*
+ * The order below is important on x86 to reduce code size and
+ * it shouldn't hurt on other platforms. Everything up to and
+ * including lzma.pos_mask are in the first 128 bytes on x86-32,
+ * which allows using smaller instructions to access those
+ * variables. On x86-64, fewer variables fit into the first 128
+ * bytes, but this is still the best order without sacrificing
+ * the readability by splitting the structures.
+ */
+ struct rc_dec rc;
+ struct dictionary dict;
+ struct lzma2_dec lzma2;
+ struct lzma_dec lzma;
+
+ /*
+ * Temporary buffer which holds small number of input bytes between
+ * decoder calls. See lzma2_lzma() for details.
+ */
+ struct {
+ uint32_t size;
+ uint8_t buf[3 * LZMA_IN_REQUIRED];
+ } temp;
};
/**************
@@ -1605,30 +1605,30 @@ struct xz_dec_lzma2 {
*/
static void dict_reset(struct dictionary *dict, struct xz_buf *b)
{
- if (DEC_IS_SINGLE(dict->mode)) {
- dict->buf = b->out + b->out_pos;
- dict->end = b->out_size - b->out_pos;
- }
+ if (DEC_IS_SINGLE(dict->mode)) {
+ dict->buf = b->out + b->out_pos;
+ dict->end = b->out_size - b->out_pos;
+ }
- dict->start = 0;
- dict->pos = 0;
- dict->limit = 0;
- dict->full = 0;
+ dict->start = 0;
+ dict->pos = 0;
+ dict->limit = 0;
+ dict->full = 0;
}
/* Set dictionary write limit */
static void dict_limit(struct dictionary *dict, size_t out_max)
{
- if (dict->end - dict->pos <= out_max)
- dict->limit = dict->end;
- else
- dict->limit = dict->pos + out_max;
+ if (dict->end - dict->pos <= out_max)
+ dict->limit = dict->end;
+ else
+ dict->limit = dict->pos + out_max;
}
/* Return true if at least one byte can be written into the dictionary. */
static inline int dict_has_space(const struct dictionary *dict)
{
- return dict->pos < dict->limit;
+ return dict->pos < dict->limit;
}
/*
@@ -1639,12 +1639,12 @@ static inline int dict_has_space(const struct dictionary *dict)
*/
static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
{
- size_t offset = dict->pos - dist - 1;
+ size_t offset = dict->pos - dist - 1;
- if (dist >= dict->pos)
- offset += dict->end;
+ if (dist >= dict->pos)
+ offset += dict->end;
- return dict->full > 0 ? dict->buf[offset] : 0;
+ return dict->full > 0 ? dict->buf[offset] : 0;
}
/*
@@ -1652,10 +1652,10 @@ static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
*/
static inline void dict_put(struct dictionary *dict, uint8_t byte)
{
- dict->buf[dict->pos++] = byte;
+ dict->buf[dict->pos++] = byte;
- if (dict->full < dict->pos)
- dict->full = dict->pos;
+ if (dict->full < dict->pos)
+ dict->full = dict->pos;
}
/*
@@ -1665,66 +1665,66 @@ static inline void dict_put(struct dictionary *dict, uint8_t byte)
*/
static int dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
{
- size_t back;
- uint32_t left;
+ size_t back;
+ uint32_t left;
- if (dist >= dict->full || dist >= dict->size) return 0;
+ if (dist >= dict->full || dist >= dict->size) return 0;
- left = min_t(size_t, dict->limit - dict->pos, *len);
- *len -= left;
+ left = min_t(size_t, dict->limit - dict->pos, *len);
+ *len -= left;
- back = dict->pos - dist - 1;
- if (dist >= dict->pos)
- back += dict->end;
+ back = dict->pos - dist - 1;
+ if (dist >= dict->pos)
+ back += dict->end;
- do {
- dict->buf[dict->pos++] = dict->buf[back++];
- if (back == dict->end)
- back = 0;
- } while (--left > 0);
+ do {
+ dict->buf[dict->pos++] = dict->buf[back++];
+ if (back == dict->end)
+ back = 0;
+ } while (--left > 0);
- if (dict->full < dict->pos)
- dict->full = dict->pos;
+ if (dict->full < dict->pos)
+ dict->full = dict->pos;
- return 1;
+ return 1;
}
/* Copy uncompressed data as is from input to dictionary and output buffers. */
static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
- uint32_t *left)
+ uint32_t *left)
{
- size_t copy_size;
+ size_t copy_size;
- while (*left > 0 && b->in_pos < b->in_size
- && b->out_pos < b->out_size) {
- copy_size = min(b->in_size - b->in_pos,
- b->out_size - b->out_pos);
- if (copy_size > dict->end - dict->pos)
- copy_size = dict->end - dict->pos;
- if (copy_size > *left)
- copy_size = *left;
+ while (*left > 0 && b->in_pos < b->in_size
+ && b->out_pos < b->out_size) {
+ copy_size = min(b->in_size - b->in_pos,
+ b->out_size - b->out_pos);
+ if (copy_size > dict->end - dict->pos)
+ copy_size = dict->end - dict->pos;
+ if (copy_size > *left)
+ copy_size = *left;
- *left -= copy_size;
+ *left -= copy_size;
- memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
- dict->pos += copy_size;
+ memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
+ dict->pos += copy_size;
- if (dict->full < dict->pos)
- dict->full = dict->pos;
+ if (dict->full < dict->pos)
+ dict->full = dict->pos;
- if (DEC_IS_MULTI(dict->mode)) {
- if (dict->pos == dict->end)
- dict->pos = 0;
+ if (DEC_IS_MULTI(dict->mode)) {
+ if (dict->pos == dict->end)
+ dict->pos = 0;
- memcpy(b->out + b->out_pos, b->in + b->in_pos,
- copy_size);
- }
+ memcpy(b->out + b->out_pos, b->in + b->in_pos,
+ copy_size);
+ }
- dict->start = dict->pos;
+ dict->start = dict->pos;
- b->out_pos += copy_size;
- b->in_pos += copy_size;
- }
+ b->out_pos += copy_size;
+ b->in_pos += copy_size;
+ }
}
/*
@@ -1734,19 +1734,19 @@ static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
*/
static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
{
- size_t copy_size = dict->pos - dict->start;
+ size_t copy_size = dict->pos - dict->start;
- if (DEC_IS_MULTI(dict->mode)) {
- if (dict->pos == dict->end)
- dict->pos = 0;
+ if (DEC_IS_MULTI(dict->mode)) {
+ if (dict->pos == dict->end)
+ dict->pos = 0;
- memcpy(b->out + b->out_pos, dict->buf + dict->start,
- copy_size);
- }
+ memcpy(b->out + b->out_pos, dict->buf + dict->start,
+ copy_size);
+ }
- dict->start = dict->pos;
- b->out_pos += copy_size;
- return copy_size;
+ dict->start = dict->pos;
+ b->out_pos += copy_size;
+ return copy_size;
}
/*****************
@@ -1756,9 +1756,9 @@ static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
/* Reset the range decoder. */
static void rc_reset(struct rc_dec *rc)
{
- rc->range = (uint32_t)-1;
- rc->code = 0;
- rc->init_bytes_left = RC_INIT_BYTES;
+ rc->range = (uint32_t)-1;
+ rc->code = 0;
+ rc->init_bytes_left = RC_INIT_BYTES;
}
/*
@@ -1767,20 +1767,20 @@ static void rc_reset(struct rc_dec *rc)
*/
static int rc_read_init(struct rc_dec *rc, struct xz_buf *b)
{
- while (rc->init_bytes_left > 0) {
- if (b->in_pos == b->in_size) return 0;
+ while (rc->init_bytes_left > 0) {
+ if (b->in_pos == b->in_size) return 0;
- rc->code = (rc->code << 8) + b->in[b->in_pos++];
- --rc->init_bytes_left;
- }
+ rc->code = (rc->code << 8) + b->in[b->in_pos++];
+ --rc->init_bytes_left;
+ }
- return 1;
+ return 1;
}
/* Return true if there may not be enough input for the next decoding loop. */
static inline int rc_limit_exceeded(const struct rc_dec *rc)
{
- return rc->in_pos > rc->in_limit;
+ return rc->in_pos > rc->in_limit;
}
/*
@@ -1789,16 +1789,16 @@ static inline int rc_limit_exceeded(const struct rc_dec *rc)
*/
static inline int rc_is_finished(const struct rc_dec *rc)
{
- return rc->code == 0;
+ return rc->code == 0;
}
/* Read the next input byte if needed. */
static inline void rc_normalize(struct rc_dec *rc)
{
- if (rc->range < RC_TOP_VALUE) {
- rc->range <<= RC_SHIFT_BITS;
- rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
- }
+ if (rc->range < RC_TOP_VALUE) {
+ rc->range <<= RC_SHIFT_BITS;
+ rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
+ }
}
/*
@@ -1814,72 +1814,72 @@ static inline void rc_normalize(struct rc_dec *rc)
*/
static inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
{
- uint32_t bound;
- int bit;
+ uint32_t bound;
+ int bit;
- rc_normalize(rc);
- bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
- if (rc->code < bound) {
- rc->range = bound;
- *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
- bit = 0;
- } else {
- rc->range -= bound;
- rc->code -= bound;
- *prob -= *prob >> RC_MOVE_BITS;
- bit = 1;
- }
+ rc_normalize(rc);
+ bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
+ if (rc->code < bound) {
+ rc->range = bound;
+ *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
+ bit = 0;
+ } else {
+ rc->range -= bound;
+ rc->code -= bound;
+ *prob -= *prob >> RC_MOVE_BITS;
+ bit = 1;
+ }
- return bit;
+ return bit;
}
/* Decode a bittree starting from the most significant bit. */
static inline uint32_t rc_bittree(struct rc_dec *rc,
- uint16_t *probs, uint32_t limit)
+ uint16_t *probs, uint32_t limit)
{
- uint32_t symbol = 1;
+ uint32_t symbol = 1;
- do {
- if (rc_bit(rc, &probs[symbol]))
- symbol = (symbol << 1) + 1;
- else
- symbol <<= 1;
- } while (symbol < limit);
+ do {
+ if (rc_bit(rc, &probs[symbol]))
+ symbol = (symbol << 1) + 1;
+ else
+ symbol <<= 1;
+ } while (symbol < limit);
- return symbol;
+ return symbol;
}
/* Decode a bittree starting from the least significant bit. */
static inline void rc_bittree_reverse(struct rc_dec *rc,
- uint16_t *probs,
- uint32_t *dest, uint32_t limit)
+ uint16_t *probs,
+ uint32_t *dest, uint32_t limit)
{
- uint32_t symbol = 1;
- uint32_t i = 0;
+ uint32_t symbol = 1;
+ uint32_t i = 0;
- do {
- if (rc_bit(rc, &probs[symbol])) {
- symbol = (symbol << 1) + 1;
- *dest += 1 << i;
- } else {
- symbol <<= 1;
- }
- } while (++i < limit);
+ do {
+ if (rc_bit(rc, &probs[symbol])) {
+ symbol = (symbol << 1) + 1;
+ *dest += 1 << i;
+ } else {
+ symbol <<= 1;
+ }
+ } while (++i < limit);
}
/* Decode direct bits (fixed fifty-fifty probability) */
static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
{
- uint32_t mask;
+ uint32_t mask;
- do {
- rc_normalize(rc);
- rc->range >>= 1;
- rc->code -= rc->range;
- mask = (uint32_t)0 - (rc->code >> 31);
- rc->code += rc->range & mask;
- *dest = (*dest << 1) + (mask + 1);
- } while (--limit > 0);
+ do {
+ rc_normalize(rc);
+ rc->range >>= 1;
+ rc->code -= rc->range;
+ mask = (uint32_t)0 - (rc->code >> 31);
+ rc->code += rc->range & mask;
+ *dest = (*dest << 1) + (mask + 1);
+ } while (--limit > 0);
}
/********
@@ -1889,114 +1889,114 @@ static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
/* Get pointer to literal coder probability array. */
static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
{
- uint32_t prev_byte = dict_get(&s->dict, 0);
- uint32_t low = prev_byte >> (8 - s->lzma.lc);
- uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
- return s->lzma.literal[low + high];
+ uint32_t prev_byte = dict_get(&s->dict, 0);
+ uint32_t low = prev_byte >> (8 - s->lzma.lc);
+ uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
+ return s->lzma.literal[low + high];
}
/* Decode a literal (one 8-bit byte) */
static void lzma_literal(struct xz_dec_lzma2 *s)
{
- uint16_t *probs;
- uint32_t symbol;
- uint32_t match_byte;
- uint32_t match_bit;
- uint32_t offset;
- uint32_t i;
-
- probs = lzma_literal_probs(s);
-
- if (lzma_state_is_literal(s->lzma.state)) {
- symbol = rc_bittree(&s->rc, probs, 0x100);
- } else {
- symbol = 1;
- match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
- offset = 0x100;
-
- do {
- match_bit = match_byte & offset;
- match_byte <<= 1;
- i = offset + match_bit + symbol;
-
- if (rc_bit(&s->rc, &probs[i])) {
- symbol = (symbol << 1) + 1;
- offset &= match_bit;
- } else {
- symbol <<= 1;
- offset &= ~match_bit;
- }
- } while (symbol < 0x100);
- }
-
- dict_put(&s->dict, (uint8_t)symbol);
- lzma_state_literal(&s->lzma.state);
+ uint16_t *probs;
+ uint32_t symbol;
+ uint32_t match_byte;
+ uint32_t match_bit;
+ uint32_t offset;
+ uint32_t i;
+
+ probs = lzma_literal_probs(s);
+
+ if (lzma_state_is_literal(s->lzma.state)) {
+ symbol = rc_bittree(&s->rc, probs, 0x100);
+ } else {
+ symbol = 1;
+ match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
+ offset = 0x100;
+
+ do {
+ match_bit = match_byte & offset;
+ match_byte <<= 1;
+ i = offset + match_bit + symbol;
+
+ if (rc_bit(&s->rc, &probs[i])) {
+ symbol = (symbol << 1) + 1;
+ offset &= match_bit;
+ } else {
+ symbol <<= 1;
+ offset &= ~match_bit;
+ }
+ } while (symbol < 0x100);
+ }
+
+ dict_put(&s->dict, (uint8_t)symbol);
+ lzma_state_literal(&s->lzma.state);
}
/* Decode the length of the match into s->lzma.len. */
static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
- uint32_t pos_state)
-{
- uint16_t *probs;
- uint32_t limit;
-
- if (!rc_bit(&s->rc, &l->choice)) {
- probs = l->low[pos_state];
- limit = LEN_LOW_SYMBOLS;
- s->lzma.len = MATCH_LEN_MIN;
- } else {
- if (!rc_bit(&s->rc, &l->choice2)) {
- probs = l->mid[pos_state];
- limit = LEN_MID_SYMBOLS;
- s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
- } else {
- probs = l->high;
- limit = LEN_HIGH_SYMBOLS;
- s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
- + LEN_MID_SYMBOLS;
- }
- }
-
- s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
+ uint32_t pos_state)
+{
+ uint16_t *probs;
+ uint32_t limit;
+
+ if (!rc_bit(&s->rc, &l->choice)) {
+ probs = l->low[pos_state];
+ limit = LEN_LOW_SYMBOLS;
+ s->lzma.len = MATCH_LEN_MIN;
+ } else {
+ if (!rc_bit(&s->rc, &l->choice2)) {
+ probs = l->mid[pos_state];
+ limit = LEN_MID_SYMBOLS;
+ s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
+ } else {
+ probs = l->high;
+ limit = LEN_HIGH_SYMBOLS;
+ s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
+ + LEN_MID_SYMBOLS;
+ }
+ }
+
+ s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
}
/* Decode a match. The distance will be stored in s->lzma.rep0. */
static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
{
- uint16_t *probs;
- uint32_t dist_slot;
- uint32_t limit;
+ uint16_t *probs;
+ uint32_t dist_slot;
+ uint32_t limit;
- lzma_state_match(&s->lzma.state);
+ lzma_state_match(&s->lzma.state);
- s->lzma.rep3 = s->lzma.rep2;
- s->lzma.rep2 = s->lzma.rep1;
- s->lzma.rep1 = s->lzma.rep0;
+ s->lzma.rep3 = s->lzma.rep2;
+ s->lzma.rep2 = s->lzma.rep1;
+ s->lzma.rep1 = s->lzma.rep0;
- lzma_len(s, &s->lzma.match_len_dec, pos_state);
+ lzma_len(s, &s->lzma.match_len_dec, pos_state);
- probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
- dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
+ probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
+ dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
- if (dist_slot < DIST_MODEL_START) {
- s->lzma.rep0 = dist_slot;
- } else {
- limit = (dist_slot >> 1) - 1;
- s->lzma.rep0 = 2 + (dist_slot & 1);
+ if (dist_slot < DIST_MODEL_START) {
+ s->lzma.rep0 = dist_slot;
+ } else {
+ limit = (dist_slot >> 1) - 1;
+ s->lzma.rep0 = 2 + (dist_slot & 1);
- if (dist_slot < DIST_MODEL_END) {
- s->lzma.rep0 <<= limit;
- probs = s->lzma.dist_special + s->lzma.rep0
- - dist_slot - 1;
- rc_bittree_reverse(&s->rc, probs,
- &s->lzma.rep0, limit);
- } else {
- rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
- s->lzma.rep0 <<= ALIGN_BITS;
- rc_bittree_reverse(&s->rc, s->lzma.dist_align,
- &s->lzma.rep0, ALIGN_BITS);
- }
- }
+ if (dist_slot < DIST_MODEL_END) {
+ s->lzma.rep0 <<= limit;
+ probs = s->lzma.dist_special + s->lzma.rep0
+ - dist_slot - 1;
+ rc_bittree_reverse(&s->rc, probs,
+ &s->lzma.rep0, limit);
+ } else {
+ rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
+ s->lzma.rep0 <<= ALIGN_BITS;
+ rc_bittree_reverse(&s->rc, s->lzma.dist_align,
+ &s->lzma.rep0, ALIGN_BITS);
+ }
+ }
}
/*
@@ -2005,77 +2005,77 @@ static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
*/
static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
{
- uint32_t tmp;
-
- if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
- if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
- s->lzma.state][pos_state])) {
- lzma_state_short_rep(&s->lzma.state);
- s->lzma.len = 1;
- return;
- }
- } else {
- if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
- tmp = s->lzma.rep1;
- } else {
- if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
- tmp = s->lzma.rep2;
- } else {
- tmp = s->lzma.rep3;
- s->lzma.rep3 = s->lzma.rep2;
- }
-
- s->lzma.rep2 = s->lzma.rep1;
- }
-
- s->lzma.rep1 = s->lzma.rep0;
- s->lzma.rep0 = tmp;
- }
-
- lzma_state_long_rep(&s->lzma.state);
- lzma_len(s, &s->lzma.rep_len_dec, pos_state);
+ uint32_t tmp;
+
+ if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
+ if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
+ s->lzma.state][pos_state])) {
+ lzma_state_short_rep(&s->lzma.state);
+ s->lzma.len = 1;
+ return;
+ }
+ } else {
+ if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
+ tmp = s->lzma.rep1;
+ } else {
+ if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
+ tmp = s->lzma.rep2;
+ } else {
+ tmp = s->lzma.rep3;
+ s->lzma.rep3 = s->lzma.rep2;
+ }
+
+ s->lzma.rep2 = s->lzma.rep1;
+ }
+
+ s->lzma.rep1 = s->lzma.rep0;
+ s->lzma.rep0 = tmp;
+ }
+
+ lzma_state_long_rep(&s->lzma.state);
+ lzma_len(s, &s->lzma.rep_len_dec, pos_state);
}
/* LZMA decoder core */
static int lzma_main(struct xz_dec_lzma2 *s)
{
- uint32_t pos_state;
-
- /*
- * If the dictionary was reached during the previous call, try to
- * finish the possibly pending repeat in the dictionary.
- */
- if (dict_has_space(&s->dict) && s->lzma.len > 0)
- dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
-
- /*
- * Decode more LZMA symbols. One iteration may consume up to
- * LZMA_IN_REQUIRED - 1 bytes.
- */
- while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
- pos_state = s->dict.pos & s->lzma.pos_mask;
-
- if (!rc_bit(&s->rc, &s->lzma.is_match[
- s->lzma.state][pos_state])) {
- lzma_literal(s);
- } else {
- if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
- lzma_rep_match(s, pos_state);
- else
- lzma_match(s, pos_state);
-
- if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
- return 0;
- }
- }
-
- /*
- * Having the range decoder always normalized when we are outside
- * this function makes it easier to correctly handle end of the chunk.
- */
- rc_normalize(&s->rc);
-
- return 1;
+ uint32_t pos_state;
+
+ /*
+ * If the dictionary was reached during the previous call, try to
+ * finish the possibly pending repeat in the dictionary.
+ */
+ if (dict_has_space(&s->dict) && s->lzma.len > 0)
+ dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
+
+ /*
+ * Decode more LZMA symbols. One iteration may consume up to
+ * LZMA_IN_REQUIRED - 1 bytes.
+ */
+ while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
+ pos_state = s->dict.pos & s->lzma.pos_mask;
+
+ if (!rc_bit(&s->rc, &s->lzma.is_match[
+ s->lzma.state][pos_state])) {
+ lzma_literal(s);
+ } else {
+ if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
+ lzma_rep_match(s, pos_state);
+ else
+ lzma_match(s, pos_state);
+
+ if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
+ return 0;
+ }
+ }
+
+ /*
+ * Having the range decoder always normalized when we are outside
+ * this function makes it easier to correctly handle end of the chunk.
+ */
+ rc_normalize(&s->rc);
+
+ return 1;
}
/*
@@ -2084,29 +2084,29 @@ static int lzma_main(struct xz_dec_lzma2 *s)
*/
static void lzma_reset(struct xz_dec_lzma2 *s)
{
- uint16_t *probs;
- size_t i;
+ uint16_t *probs;
+ size_t i;
- s->lzma.state = STATE_LIT_LIT;
- s->lzma.rep0 = 0;
- s->lzma.rep1 = 0;
- s->lzma.rep2 = 0;
- s->lzma.rep3 = 0;
+ s->lzma.state = STATE_LIT_LIT;
+ s->lzma.rep0 = 0;
+ s->lzma.rep1 = 0;
+ s->lzma.rep2 = 0;
+ s->lzma.rep3 = 0;
- /*
- * All probabilities are initialized to the same value. This hack
- * makes the code smaller by avoiding a separate loop for each
- * probability array.
- *
- * This could be optimized so that only that part of literal
- * probabilities that are actually required. In the common case
- * we would write 12 KiB less.
- */
- probs = s->lzma.is_match[0];
- for (i = 0; i < PROBS_TOTAL; ++i)
- probs[i] = RC_BIT_MODEL_TOTAL / 2;
+ /*
+ * All probabilities are initialized to the same value. This hack
+ * makes the code smaller by avoiding a separate loop for each
+ * probability array.
+ *
+ * This could be optimized so that only that part of literal
+ * probabilities that are actually required. In the common case
+ * we would write 12 KiB less.
+ */
+ probs = s->lzma.is_match[0];
+ for (i = 0; i < PROBS_TOTAL; ++i)
+ probs[i] = RC_BIT_MODEL_TOTAL / 2;
- rc_reset(&s->rc);
+ rc_reset(&s->rc);
}
/*
@@ -2116,33 +2116,33 @@ static void lzma_reset(struct xz_dec_lzma2 *s)
*/
static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
{
- if (props > (4 * 5 + 4) * 9 + 8)
- return 0;
+ if (props > (4 * 5 + 4) * 9 + 8)
+ return 0;
- s->lzma.pos_mask = 0;
- while (props >= 9 * 5) {
- props -= 9 * 5;
- ++s->lzma.pos_mask;
- }
+ s->lzma.pos_mask = 0;
+ while (props >= 9 * 5) {
+ props -= 9 * 5;
+ ++s->lzma.pos_mask;
+ }
- s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
+ s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
- s->lzma.literal_pos_mask = 0;
- while (props >= 9) {
- props -= 9;
- ++s->lzma.literal_pos_mask;
- }
+ s->lzma.literal_pos_mask = 0;
+ while (props >= 9) {
+ props -= 9;
+ ++s->lzma.literal_pos_mask;
+ }
- s->lzma.lc = props;
+ s->lzma.lc = props;
- if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
- return 0;
+ if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
+ return 0;
- s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
+ s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
- lzma_reset(s);
+ lzma_reset(s);
- return 1;
+ return 1;
}
/*********
@@ -2163,82 +2163,82 @@ static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
*/
static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
{
- size_t in_avail;
- uint32_t tmp;
+ size_t in_avail;
+ uint32_t tmp;
- in_avail = b->in_size - b->in_pos;
- if (s->temp.size > 0 || s->lzma2.compressed == 0) {
- tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
- if (tmp > s->lzma2.compressed - s->temp.size)
- tmp = s->lzma2.compressed - s->temp.size;
- if (tmp > in_avail)
- tmp = in_avail;
+ in_avail = b->in_size - b->in_pos;
+ if (s->temp.size > 0 || s->lzma2.compressed == 0) {
+ tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
+ if (tmp > s->lzma2.compressed - s->temp.size)
+ tmp = s->lzma2.compressed - s->temp.size;
+ if (tmp > in_avail)
+ tmp = in_avail;
- memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
+ memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
- if (s->temp.size + tmp == s->lzma2.compressed) {
- memset(s->temp.buf + s->temp.size + tmp, 0,
- sizeof(s->temp.buf)
- - s->temp.size - tmp);
- s->rc.in_limit = s->temp.size + tmp;
- } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
- s->temp.size += tmp;
- b->in_pos += tmp;
- return 1;
- } else {
- s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
- }
+ if (s->temp.size + tmp == s->lzma2.compressed) {
+ memset(s->temp.buf + s->temp.size + tmp, 0,
+ sizeof(s->temp.buf)
+ - s->temp.size - tmp);
+ s->rc.in_limit = s->temp.size + tmp;
+ } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
+ s->temp.size += tmp;
+ b->in_pos += tmp;
+ return 1;
+ } else {
+ s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
+ }
- s->rc.in = s->temp.buf;
- s->rc.in_pos = 0;
+ s->rc.in = s->temp.buf;
+ s->rc.in_pos = 0;
- if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
- return 0;
+ if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
+ return 0;
- s->lzma2.compressed -= s->rc.in_pos;
+ s->lzma2.compressed -= s->rc.in_pos;
- if (s->rc.in_pos < s->temp.size) {
- s->temp.size -= s->rc.in_pos;
- memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
- s->temp.size);
- return 1;
- }
+ if (s->rc.in_pos < s->temp.size) {
+ s->temp.size -= s->rc.in_pos;
+ memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
+ s->temp.size);
+ return 1;
+ }
- b->in_pos += s->rc.in_pos - s->temp.size;
- s->temp.size = 0;
- }
+ b->in_pos += s->rc.in_pos - s->temp.size;
+ s->temp.size = 0;
+ }
- in_avail = b->in_size - b->in_pos;
- if (in_avail >= LZMA_IN_REQUIRED) {
- s->rc.in = b->in;
- s->rc.in_pos = b->in_pos;
+ in_avail = b->in_size - b->in_pos;
+ if (in_avail >= LZMA_IN_REQUIRED) {
+ s->rc.in = b->in;
+ s->rc.in_pos = b->in_pos;
- if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
- s->rc.in_limit = b->in_pos + s->lzma2.compressed;
- else
- s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
+ if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
+ s->rc.in_limit = b->in_pos + s->lzma2.compressed;
+ else
+ s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
- if (!lzma_main(s))
- return 0;
+ if (!lzma_main(s))
+ return 0;
- in_avail = s->rc.in_pos - b->in_pos;
- if (in_avail > s->lzma2.compressed) return 0;
+ in_avail = s->rc.in_pos - b->in_pos;
+ if (in_avail > s->lzma2.compressed) return 0;
- s->lzma2.compressed -= in_avail;
- b->in_pos = s->rc.in_pos;
- }
+ s->lzma2.compressed -= in_avail;
+ b->in_pos = s->rc.in_pos;
+ }
- in_avail = b->in_size - b->in_pos;
- if (in_avail < LZMA_IN_REQUIRED) {
- if (in_avail > s->lzma2.compressed)
- in_avail = s->lzma2.compressed;
+ in_avail = b->in_size - b->in_pos;
+ if (in_avail < LZMA_IN_REQUIRED) {
+ if (in_avail > s->lzma2.compressed)
+ in_avail = s->lzma2.compressed;
- memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
- s->temp.size = in_avail;
- b->in_pos += in_avail;
- }
+ memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
+ s->temp.size = in_avail;
+ b->in_pos += in_avail;
+ }
- return 1;
+ return 1;
}
/*
@@ -2246,237 +2246,237 @@ static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
* decoding or copying of uncompressed chunks to other functions.
*/
enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
- struct xz_buf *b)
-{
- uint32_t tmp;
-
- while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
- switch (s->lzma2.sequence) {
- case SEQ_CONTROL:
- /*
- * LZMA2 control byte
- *
- * Exact values:
- * 0x00 End marker
- * 0x01 Dictionary reset followed by
- * an uncompressed chunk
- * 0x02 Uncompressed chunk (no dictionary reset)
- *
- * Highest three bits (s->control & 0xE0):
- * 0xE0 Dictionary reset, new properties and state
- * reset, followed by LZMA compressed chunk
- * 0xC0 New properties and state reset, followed
- * by LZMA compressed chunk (no dictionary
- * reset)
- * 0xA0 State reset using old properties,
- * followed by LZMA compressed chunk (no
- * dictionary reset)
- * 0x80 LZMA chunk (no dictionary or state reset)
- *
- * For LZMA compressed chunks, the lowest five bits
- * (s->control & 1F) are the highest bits of the
- * uncompressed size (bits 16-20).
- *
- * A new LZMA2 stream must begin with a dictionary
- * reset. The first LZMA chunk must set new
- * properties and reset the LZMA state.
- *
- * Values that don't match anything described above
- * are invalid and we return XZ_DATA_ERROR.
- */
- tmp = b->in[b->in_pos++];
-
- if (tmp == 0x00)
- return XZ_STREAM_END;
-
- if (tmp >= 0xE0 || tmp == 0x01) {
- s->lzma2.need_props = 1;
- s->lzma2.need_dict_reset = 0;
- dict_reset(&s->dict, b);
- } else if (s->lzma2.need_dict_reset) {
- return XZ_DATA_ERROR;
- }
-
- if (tmp >= 0x80) {
- s->lzma2.uncompressed = (tmp & 0x1F) << 16;
- s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
-
- if (tmp >= 0xC0) {
- /*
- * When there are new properties,
- * state reset is done at
- * SEQ_PROPERTIES.
- */
- s->lzma2.need_props = 0;
- s->lzma2.next_sequence
- = SEQ_PROPERTIES;
-
- } else if (s->lzma2.need_props) {
- return XZ_DATA_ERROR;
-
- } else {
- s->lzma2.next_sequence
- = SEQ_LZMA_PREPARE;
- if (tmp >= 0xA0)
- lzma_reset(s);
- }
- } else {
- if (tmp > 0x02)
- return XZ_DATA_ERROR;
-
- s->lzma2.sequence = SEQ_COMPRESSED_0;
- s->lzma2.next_sequence = SEQ_COPY;
- }
-
- break;
-
- case SEQ_UNCOMPRESSED_1:
- s->lzma2.uncompressed
- += (uint32_t)b->in[b->in_pos++] << 8;
- s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
- break;
-
- case SEQ_UNCOMPRESSED_2:
- s->lzma2.uncompressed
- += (uint32_t)b->in[b->in_pos++] + 1;
- s->lzma2.sequence = SEQ_COMPRESSED_0;
- break;
-
- case SEQ_COMPRESSED_0:
- s->lzma2.compressed
- = (uint32_t)b->in[b->in_pos++] << 8;
- s->lzma2.sequence = SEQ_COMPRESSED_1;
- break;
-
- case SEQ_COMPRESSED_1:
- s->lzma2.compressed
- += (uint32_t)b->in[b->in_pos++] + 1;
- s->lzma2.sequence = s->lzma2.next_sequence;
- break;
-
- case SEQ_PROPERTIES:
- if (!lzma_props(s, b->in[b->in_pos++]))
- return XZ_DATA_ERROR;
-
- s->lzma2.sequence = SEQ_LZMA_PREPARE;
-
- case SEQ_LZMA_PREPARE:
- if (s->lzma2.compressed < RC_INIT_BYTES)
- return XZ_DATA_ERROR;
-
- if (!rc_read_init(&s->rc, b))
- return XZ_OK;
-
- s->lzma2.compressed -= RC_INIT_BYTES;
- s->lzma2.sequence = SEQ_LZMA_RUN;
-
- case SEQ_LZMA_RUN:
- /*
- * Set dictionary limit to indicate how much we want
- * to be encoded at maximum. Decode new data into the
- * dictionary. Flush the new data from dictionary to
- * b->out. Check if we finished decoding this chunk.
- * In case the dictionary got full but we didn't fill
- * the output buffer yet, we may run this loop
- * multiple times without changing s->lzma2.sequence.
- */
- dict_limit(&s->dict, min_t(size_t,
- b->out_size - b->out_pos,
- s->lzma2.uncompressed));
- if (!lzma2_lzma(s, b))
- return XZ_DATA_ERROR;
-
- s->lzma2.uncompressed -= dict_flush(&s->dict, b);
-
- if (s->lzma2.uncompressed == 0) {
- if (s->lzma2.compressed > 0 || s->lzma.len > 0
- || !rc_is_finished(&s->rc))
- return XZ_DATA_ERROR;
-
- rc_reset(&s->rc);
- s->lzma2.sequence = SEQ_CONTROL;
-
- } else if (b->out_pos == b->out_size
- || (b->in_pos == b->in_size
- && s->temp.size
- < s->lzma2.compressed)) {
- return XZ_OK;
- }
-
- break;
-
- case SEQ_COPY:
- dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
- if (s->lzma2.compressed > 0)
- return XZ_OK;
-
- s->lzma2.sequence = SEQ_CONTROL;
- break;
- }
- }
-
- return XZ_OK;
+ struct xz_buf *b)
+{
+ uint32_t tmp;
+
+ while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
+ switch (s->lzma2.sequence) {
+ case SEQ_CONTROL:
+ /*
+ * LZMA2 control byte
+ *
+ * Exact values:
+ * 0x00 End marker
+ * 0x01 Dictionary reset followed by
+ * an uncompressed chunk
+ * 0x02 Uncompressed chunk (no dictionary reset)
+ *
+ * Highest three bits (s->control & 0xE0):
+ * 0xE0 Dictionary reset, new properties and state
+ * reset, followed by LZMA compressed chunk
+ * 0xC0 New properties and state reset, followed
+ * by LZMA compressed chunk (no dictionary
+ * reset)
+ * 0xA0 State reset using old properties,
+ * followed by LZMA compressed chunk (no
+ * dictionary reset)
+ * 0x80 LZMA chunk (no dictionary or state reset)
+ *
+ * For LZMA compressed chunks, the lowest five bits
+ * (s->control & 1F) are the highest bits of the
+ * uncompressed size (bits 16-20).
+ *
+ * A new LZMA2 stream must begin with a dictionary
+ * reset. The first LZMA chunk must set new
+ * properties and reset the LZMA state.
+ *
+ * Values that don't match anything described above
+ * are invalid and we return XZ_DATA_ERROR.
+ */
+ tmp = b->in[b->in_pos++];
+
+ if (tmp == 0x00)
+ return XZ_STREAM_END;
+
+ if (tmp >= 0xE0 || tmp == 0x01) {
+ s->lzma2.need_props = 1;
+ s->lzma2.need_dict_reset = 0;
+ dict_reset(&s->dict, b);
+ } else if (s->lzma2.need_dict_reset) {
+ return XZ_DATA_ERROR;
+ }
+
+ if (tmp >= 0x80) {
+ s->lzma2.uncompressed = (tmp & 0x1F) << 16;
+ s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
+
+ if (tmp >= 0xC0) {
+ /*
+ * When there are new properties,
+ * state reset is done at
+ * SEQ_PROPERTIES.
+ */
+ s->lzma2.need_props = 0;
+ s->lzma2.next_sequence
+ = SEQ_PROPERTIES;
+
+ } else if (s->lzma2.need_props) {
+ return XZ_DATA_ERROR;
+
+ } else {
+ s->lzma2.next_sequence
+ = SEQ_LZMA_PREPARE;
+ if (tmp >= 0xA0)
+ lzma_reset(s);
+ }
+ } else {
+ if (tmp > 0x02)
+ return XZ_DATA_ERROR;
+
+ s->lzma2.sequence = SEQ_COMPRESSED_0;
+ s->lzma2.next_sequence = SEQ_COPY;
+ }
+
+ break;
+
+ case SEQ_UNCOMPRESSED_1:
+ s->lzma2.uncompressed
+ += (uint32_t)b->in[b->in_pos++] << 8;
+ s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
+ break;
+
+ case SEQ_UNCOMPRESSED_2:
+ s->lzma2.uncompressed
+ += (uint32_t)b->in[b->in_pos++] + 1;
+ s->lzma2.sequence = SEQ_COMPRESSED_0;
+ break;
+
+ case SEQ_COMPRESSED_0:
+ s->lzma2.compressed
+ = (uint32_t)b->in[b->in_pos++] << 8;
+ s->lzma2.sequence = SEQ_COMPRESSED_1;
+ break;
+
+ case SEQ_COMPRESSED_1:
+ s->lzma2.compressed
+ += (uint32_t)b->in[b->in_pos++] + 1;
+ s->lzma2.sequence = s->lzma2.next_sequence;
+ break;
+
+ case SEQ_PROPERTIES:
+ if (!lzma_props(s, b->in[b->in_pos++]))
+ return XZ_DATA_ERROR;
+
+ s->lzma2.sequence = SEQ_LZMA_PREPARE;
+
+ case SEQ_LZMA_PREPARE:
+ if (s->lzma2.compressed < RC_INIT_BYTES)
+ return XZ_DATA_ERROR;
+
+ if (!rc_read_init(&s->rc, b))
+ return XZ_OK;
+
+ s->lzma2.compressed -= RC_INIT_BYTES;
+ s->lzma2.sequence = SEQ_LZMA_RUN;
+
+ case SEQ_LZMA_RUN:
+ /*
+ * Set dictionary limit to indicate how much we want
+ * to be encoded at maximum. Decode new data into the
+ * dictionary. Flush the new data from dictionary to
+ * b->out. Check if we finished decoding this chunk.
+ * In case the dictionary got full but we didn't fill
+ * the output buffer yet, we may run this loop
+ * multiple times without changing s->lzma2.sequence.
+ */
+ dict_limit(&s->dict, min_t(size_t,
+ b->out_size - b->out_pos,
+ s->lzma2.uncompressed));
+ if (!lzma2_lzma(s, b))
+ return XZ_DATA_ERROR;
+
+ s->lzma2.uncompressed -= dict_flush(&s->dict, b);
+
+ if (s->lzma2.uncompressed == 0) {
+ if (s->lzma2.compressed > 0 || s->lzma.len > 0
+ || !rc_is_finished(&s->rc))
+ return XZ_DATA_ERROR;
+
+ rc_reset(&s->rc);
+ s->lzma2.sequence = SEQ_CONTROL;
+
+ } else if (b->out_pos == b->out_size
+ || (b->in_pos == b->in_size
+ && s->temp.size
+ < s->lzma2.compressed)) {
+ return XZ_OK;
+ }
+
+ break;
+
+ case SEQ_COPY:
+ dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
+ if (s->lzma2.compressed > 0)
+ return XZ_OK;
+
+ s->lzma2.sequence = SEQ_CONTROL;
+ break;
+ }
+ }
+
+ return XZ_OK;
}
struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
- uint32_t dict_max)
+ uint32_t dict_max)
{
- struct xz_dec_lzma2 *s = malloc(sizeof(*s));
- if (s == NULL)
- return NULL;
+ struct xz_dec_lzma2 *s = malloc(sizeof(*s));
+ if (s == NULL)
+ return NULL;
- s->dict.mode = mode;
- s->dict.size_max = dict_max;
+ s->dict.mode = mode;
+ s->dict.size_max = dict_max;
- if (DEC_IS_PREALLOC(mode)) {
- s->dict.buf = malloc(dict_max);
- if (s->dict.buf == NULL) {
- free(s);
- return NULL;
- }
- } else if (DEC_IS_DYNALLOC(mode)) {
- s->dict.buf = NULL;
- s->dict.allocated = 0;
- }
+ if (DEC_IS_PREALLOC(mode)) {
+ s->dict.buf = malloc(dict_max);
+ if (s->dict.buf == NULL) {
+ free(s);
+ return NULL;
+ }
+ } else if (DEC_IS_DYNALLOC(mode)) {
+ s->dict.buf = NULL;
+ s->dict.allocated = 0;
+ }
- return s;
+ return s;
}
enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
{
- /* This limits dictionary size to 3 GiB to keep parsing simpler. */
- if (props > 39)
- return XZ_OPTIONS_ERROR;
+ /* This limits dictionary size to 3 GiB to keep parsing simpler. */
+ if (props > 39)
+ return XZ_OPTIONS_ERROR;
- s->dict.size = 2 + (props & 1);
- s->dict.size <<= (props >> 1) + 11;
+ s->dict.size = 2 + (props & 1);
+ s->dict.size <<= (props >> 1) + 11;
- if (DEC_IS_MULTI(s->dict.mode)) {
- if (s->dict.size > s->dict.size_max)
- return XZ_MEMLIMIT_ERROR;
+ if (DEC_IS_MULTI(s->dict.mode)) {
+ if (s->dict.size > s->dict.size_max)
+ return XZ_MEMLIMIT_ERROR;
- s->dict.end = s->dict.size;
+ s->dict.end = s->dict.size;
- if (DEC_IS_DYNALLOC(s->dict.mode)) {
- if (s->dict.allocated < s->dict.size) {
- free(s->dict.buf);
- s->dict.buf = malloc(s->dict.size);
- if (s->dict.buf == NULL) {
- s->dict.allocated = 0;
- return XZ_MEM_ERROR;
- }
- }
- }
- }
+ if (DEC_IS_DYNALLOC(s->dict.mode)) {
+ if (s->dict.allocated < s->dict.size) {
+ free(s->dict.buf);
+ s->dict.buf = malloc(s->dict.size);
+ if (s->dict.buf == NULL) {
+ s->dict.allocated = 0;
+ return XZ_MEM_ERROR;
+ }
+ }
+ }
+ }
- s->lzma.len = 0;
+ s->lzma.len = 0;
- s->lzma2.sequence = SEQ_CONTROL;
- s->lzma2.need_dict_reset = 1;
+ s->lzma2.sequence = SEQ_CONTROL;
+ s->lzma2.need_dict_reset = 1;
- s->temp.size = 0;
+ s->temp.size = 0;
- return XZ_OK;
+ return XZ_OK;
}
/*
@@ -2522,10 +2522,10 @@ typedef uint64_t vli_type;
/* Integrity Check types */
enum xz_check {
- XZ_CHECK_NONE = 0,
- XZ_CHECK_CRC32 = 1,
- XZ_CHECK_CRC64 = 4,
- XZ_CHECK_SHA256 = 10
+ XZ_CHECK_NONE = 0,
+ XZ_CHECK_CRC32 = 1,
+ XZ_CHECK_CRC64 = 4,
+ XZ_CHECK_SHA256 = 10
};
/* Maximum possible Check ID */
@@ -2536,138 +2536,138 @@ enum xz_check {
/* Hash used to validate the Index field */
struct xz_dec_hash {
- vli_type unpadded;
- vli_type uncompressed;
- uint32_t crc32;
+ vli_type unpadded;
+ vli_type uncompressed;
+ uint32_t crc32;
};
struct xz_dec {
- /* Position in dec_main() */
- enum {
- SEQ_STREAM_HEADER,
- SEQ_BLOCK_START,
- SEQ_BLOCK_HEADER,
- SEQ_BLOCK_UNCOMPRESS,
- SEQ_BLOCK_PADDING,
- SEQ_BLOCK_CHECK,
- SEQ_INDEX,
- SEQ_INDEX_PADDING,
- SEQ_INDEX_CRC32,
- SEQ_STREAM_FOOTER
- } sequence;
-
- /* Position in variable-length integers and Check fields */
- uint32_t pos;
-
- /* Variable-length integer decoded by dec_vli() */
- vli_type vli;
-
- /* Saved in_pos and out_pos */
- size_t in_start;
- size_t out_start;
-
- /* CRC32 or CRC64 value in Block or CRC32 value in Index */
- uint64_t crc;
-
- /* Type of the integrity check calculated from uncompressed data */
- enum xz_check check_type;
-
- /* Operation mode */
- enum xz_mode mode;
-
- /*
- * True if the next call to xz_dec_run() is allowed to return
- * XZ_BUF_ERROR.
- */
- int allow_buf_error;
-
- /* Information stored in Block Header */
- struct {
- /*
- * Value stored in the Compressed Size field, or
- * VLI_UNKNOWN if Compressed Size is not present.
- */
- vli_type compressed;
-
- /*
- * Value stored in the Uncompressed Size field, or
- * VLI_UNKNOWN if Uncompressed Size is not present.
- */
- vli_type uncompressed;
-
- /* Size of the Block Header field */
- uint32_t size;
- } block_header;
-
- /* Information collected when decoding Blocks */
- struct {
- /* Observed compressed size of the current Block */
- vli_type compressed;
-
- /* Observed uncompressed size of the current Block */
- vli_type uncompressed;
-
- /* Number of Blocks decoded so far */
- vli_type count;
-
- /*
- * Hash calculated from the Block sizes. This is used to
- * validate the Index field.
- */
- struct xz_dec_hash hash;
- } block;
-
- /* Variables needed when verifying the Index field */
- struct {
- /* Position in dec_index() */
- enum {
- SEQ_INDEX_COUNT,
- SEQ_INDEX_UNPADDED,
- SEQ_INDEX_UNCOMPRESSED
- } sequence;
-
- /* Size of the Index in bytes */
- vli_type size;
-
- /* Number of Records (matches block.count in valid files) */
- vli_type count;
-
- /*
- * Hash calculated from the Records (matches block.hash in
- * valid files).
- */
- struct xz_dec_hash hash;
- } index;
-
- /*
- * Temporary buffer needed to hold Stream Header, Block Header,
- * and Stream Footer. The Block Header is the biggest (1 KiB)
- * so we reserve space according to that. buf[] has to be aligned
- * to a multiple of four bytes; the size_t variables before it
- * should guarantee this.
- */
- struct {
- size_t pos;
- size_t size;
- uint8_t buf[1024];
- } temp;
-
- struct xz_dec_lzma2 *lzma2;
+ /* Position in dec_main() */
+ enum {
+ SEQ_STREAM_HEADER,
+ SEQ_BLOCK_START,
+ SEQ_BLOCK_HEADER,
+ SEQ_BLOCK_UNCOMPRESS,
+ SEQ_BLOCK_PADDING,
+ SEQ_BLOCK_CHECK,
+ SEQ_INDEX,
+ SEQ_INDEX_PADDING,
+ SEQ_INDEX_CRC32,
+ SEQ_STREAM_FOOTER
+ } sequence;
+
+ /* Position in variable-length integers and Check fields */
+ uint32_t pos;
+
+ /* Variable-length integer decoded by dec_vli() */
+ vli_type vli;
+
+ /* Saved in_pos and out_pos */
+ size_t in_start;
+ size_t out_start;
+
+ /* CRC32 or CRC64 value in Block or CRC32 value in Index */
+ uint64_t crc;
+
+ /* Type of the integrity check calculated from uncompressed data */
+ enum xz_check check_type;
+
+ /* Operation mode */
+ enum xz_mode mode;
+
+ /*
+ * True if the next call to xz_dec_run() is allowed to return
+ * XZ_BUF_ERROR.
+ */
+ int allow_buf_error;
+
+ /* Information stored in Block Header */
+ struct {
+ /*
+ * Value stored in the Compressed Size field, or
+ * VLI_UNKNOWN if Compressed Size is not present.
+ */
+ vli_type compressed;
+
+ /*
+ * Value stored in the Uncompressed Size field, or
+ * VLI_UNKNOWN if Uncompressed Size is not present.
+ */
+ vli_type uncompressed;
+
+ /* Size of the Block Header field */
+ uint32_t size;
+ } block_header;
+
+ /* Information collected when decoding Blocks */
+ struct {
+ /* Observed compressed size of the current Block */
+ vli_type compressed;
+
+ /* Observed uncompressed size of the current Block */
+ vli_type uncompressed;
+
+ /* Number of Blocks decoded so far */
+ vli_type count;
+
+ /*
+ * Hash calculated from the Block sizes. This is used to
+ * validate the Index field.
+ */
+ struct xz_dec_hash hash;
+ } block;
+
+ /* Variables needed when verifying the Index field */
+ struct {
+ /* Position in dec_index() */
+ enum {
+ SEQ_INDEX_COUNT,
+ SEQ_INDEX_UNPADDED,
+ SEQ_INDEX_UNCOMPRESSED
+ } sequence;
+
+ /* Size of the Index in bytes */
+ vli_type size;
+
+ /* Number of Records (matches block.count in valid files) */
+ vli_type count;
+
+ /*
+ * Hash calculated from the Records (matches block.hash in
+ * valid files).
+ */
+ struct xz_dec_hash hash;
+ } index;
+
+ /*
+ * Temporary buffer needed to hold Stream Header, Block Header,
+ * and Stream Footer. The Block Header is the biggest (1 KiB)
+ * so we reserve space according to that. buf[] has to be aligned
+ * to a multiple of four bytes; the size_t variables before it
+ * should guarantee this.
+ */
+ struct {
+ size_t pos;
+ size_t size;
+ uint8_t buf[1024];
+ } temp;
+
+ struct xz_dec_lzma2 *lzma2;
#ifdef XZ_DEC_BCJ
- struct xz_dec_bcj *bcj;
- int bcj_active;
+ struct xz_dec_bcj *bcj;
+ int bcj_active;
#endif
};
/* Sizes of the Check field with different Check IDs */
static const uint8_t check_sizes[16] = {
- 0,
- 4, 4, 4,
- 8, 8, 8,
- 16, 16, 16,
- 32, 32, 32,
- 64, 64, 64
+ 0,
+ 4, 4, 4,
+ 8, 8, 8,
+ 16, 16, 16,
+ 32, 32, 32,
+ 64, 64, 64
};
/*
@@ -2678,51 +2678,51 @@ static const uint8_t check_sizes[16] = {
*/
static int fill_temp(struct xz_dec *s, struct xz_buf *b)
{
- size_t copy_size = min_t(size_t,
- b->in_size - b->in_pos, s->temp.size - s->temp.pos);
+ size_t copy_size = min_t(size_t,
+ b->in_size - b->in_pos, s->temp.size - s->temp.pos);
- memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
- b->in_pos += copy_size;
- s->temp.pos += copy_size;
+ memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
+ b->in_pos += copy_size;
+ s->temp.pos += copy_size;
- if (s->temp.pos == s->temp.size) {
- s->temp.pos = 0;
- return 1;
- }
+ if (s->temp.pos == s->temp.size) {
+ s->temp.pos = 0;
+ return 1;
+ }
- return 0;
+ return 0;
}
/* Decode a variable-length integer (little-endian base-128 encoding) */
static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
- size_t *in_pos, size_t in_size)
+ size_t *in_pos, size_t in_size)
{
- uint8_t byte;
+ uint8_t byte;
- if (s->pos == 0)
- s->vli = 0;
+ if (s->pos == 0)
+ s->vli = 0;
- while (*in_pos < in_size) {
- byte = in[*in_pos];
- ++*in_pos;
+ while (*in_pos < in_size) {
+ byte = in[*in_pos];
+ ++*in_pos;
- s->vli |= (vli_type)(byte & 0x7F) << s->pos;
+ s->vli |= (vli_type)(byte & 0x7F) << s->pos;
- if ((byte & 0x80) == 0) {
- /* Don't allow non-minimal encodings. */
- if (byte == 0 && s->pos != 0)
- return XZ_DATA_ERROR;
+ if ((byte & 0x80) == 0) {
+ /* Don't allow non-minimal encodings. */
+ if (byte == 0 && s->pos != 0)
+ return XZ_DATA_ERROR;
- s->pos = 0;
- return XZ_STREAM_END;
- }
+ s->pos = 0;
+ return XZ_STREAM_END;
+ }
- s->pos += 7;
- if (s->pos == 7 * VLI_BYTES_MAX)
- return XZ_DATA_ERROR;
- }
+ s->pos += 7;
+ if (s->pos == 7 * VLI_BYTES_MAX)
+ return XZ_DATA_ERROR;
+ }
- return XZ_OK;
+ return XZ_OK;
}
/*
@@ -2739,70 +2739,70 @@ static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
*/
static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
{
- enum xz_ret ret;
+ enum xz_ret ret;
- s->in_start = b->in_pos;
- s->out_start = b->out_pos;
+ s->in_start = b->in_pos;
+ s->out_start = b->out_pos;
#ifdef XZ_DEC_BCJ
- if (s->bcj_active)
- ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
- else
+ if (s->bcj_active)
+ ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
+ else
#endif
- ret = xz_dec_lzma2_run(s->lzma2, b);
+ ret = xz_dec_lzma2_run(s->lzma2, b);
- s->block.compressed += b->in_pos - s->in_start;
- s->block.uncompressed += b->out_pos - s->out_start;
+ s->block.compressed += b->in_pos - s->in_start;
+ s->block.uncompressed += b->out_pos - s->out_start;
- /*
- * There is no need to separately check for VLI_UNKNOWN, since
- * the observed sizes are always smaller than VLI_UNKNOWN.
- */
- if (s->block.compressed > s->block_header.compressed
- || s->block.uncompressed
- > s->block_header.uncompressed)
- return XZ_DATA_ERROR;
+ /*
+ * There is no need to separately check for VLI_UNKNOWN, since
+ * the observed sizes are always smaller than VLI_UNKNOWN.
+ */
+ if (s->block.compressed > s->block_header.compressed
+ || s->block.uncompressed
+ > s->block_header.uncompressed)
+ return XZ_DATA_ERROR;
- if (s->check_type == XZ_CHECK_CRC32)
- s->crc = xz_crc32(b->out + s->out_start,
- b->out_pos - s->out_start, s->crc);
- else if (s->check_type == XZ_CHECK_CRC64)
- s->crc = xz_crc64(b->out + s->out_start,
- b->out_pos - s->out_start, s->crc);
+ if (s->check_type == XZ_CHECK_CRC32)
+ s->crc = xz_crc32(b->out + s->out_start,
+ b->out_pos - s->out_start, s->crc);
+ else if (s->check_type == XZ_CHECK_CRC64)
+ s->crc = xz_crc64(b->out + s->out_start,
+ b->out_pos - s->out_start, s->crc);
- if (ret == XZ_STREAM_END) {
- if (s->block_header.compressed != VLI_UNKNOWN
- && s->block_header.compressed
- != s->block.compressed)
- return XZ_DATA_ERROR;
+ if (ret == XZ_STREAM_END) {
+ if (s->block_header.compressed != VLI_UNKNOWN
+ && s->block_header.compressed
+ != s->block.compressed)
+ return XZ_DATA_ERROR;
- if (s->block_header.uncompressed != VLI_UNKNOWN
- && s->block_header.uncompressed
- != s->block.uncompressed)
- return XZ_DATA_ERROR;
+ if (s->block_header.uncompressed != VLI_UNKNOWN
+ && s->block_header.uncompressed
+ != s->block.uncompressed)
+ return XZ_DATA_ERROR;
- s->block.hash.unpadded += s->block_header.size
- + s->block.compressed;
+ s->block.hash.unpadded += s->block_header.size
+ + s->block.compressed;
- s->block.hash.unpadded += check_sizes[s->check_type];
+ s->block.hash.unpadded += check_sizes[s->check_type];
- s->block.hash.uncompressed += s->block.uncompressed;
- s->block.hash.crc32 = xz_crc32(
- (const uint8_t *)&s->block.hash,
- sizeof(s->block.hash), s->block.hash.crc32);
+ s->block.hash.uncompressed += s->block.uncompressed;
+ s->block.hash.crc32 = xz_crc32(
+ (const uint8_t *)&s->block.hash,
+ sizeof(s->block.hash), s->block.hash.crc32);
- ++s->block.count;
- }
+ ++s->block.count;
+ }
- return ret;
+ return ret;
}
/* Update the Index size and the CRC32 value. */
static void index_update(struct xz_dec *s, const struct xz_buf *b)
{
- size_t in_used = b->in_pos - s->in_start;
- s->index.size += in_used;
- s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
+ size_t in_used = b->in_pos - s->in_start;
+ s->index.size += in_used;
+ s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
}
/*
@@ -2815,48 +2815,48 @@ static void index_update(struct xz_dec *s, const struct xz_buf *b)
*/
static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
{
- enum xz_ret ret;
-
- do {
- ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
- if (ret != XZ_STREAM_END) {
- index_update(s, b);
- return ret;
- }
-
- switch (s->index.sequence) {
- case SEQ_INDEX_COUNT:
- s->index.count = s->vli;
-
- /*
- * Validate that the Number of Records field
- * indicates the same number of Records as
- * there were Blocks in the Stream.
- */
- if (s->index.count != s->block.count)
- return XZ_DATA_ERROR;
-
- s->index.sequence = SEQ_INDEX_UNPADDED;
- break;
-
- case SEQ_INDEX_UNPADDED:
- s->index.hash.unpadded += s->vli;
- s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
- break;
-
- case SEQ_INDEX_UNCOMPRESSED:
- s->index.hash.uncompressed += s->vli;
- s->index.hash.crc32 = xz_crc32(
- (const uint8_t *)&s->index.hash,
- sizeof(s->index.hash),
- s->index.hash.crc32);
- --s->index.count;
- s->index.sequence = SEQ_INDEX_UNPADDED;
- break;
- }
- } while (s->index.count > 0);
-
- return XZ_STREAM_END;
+ enum xz_ret ret;
+
+ do {
+ ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
+ if (ret != XZ_STREAM_END) {
+ index_update(s, b);
+ return ret;
+ }
+
+ switch (s->index.sequence) {
+ case SEQ_INDEX_COUNT:
+ s->index.count = s->vli;
+
+ /*
+ * Validate that the Number of Records field
+ * indicates the same number of Records as
+ * there were Blocks in the Stream.
+ */
+ if (s->index.count != s->block.count)
+ return XZ_DATA_ERROR;
+
+ s->index.sequence = SEQ_INDEX_UNPADDED;
+ break;
+
+ case SEQ_INDEX_UNPADDED:
+ s->index.hash.unpadded += s->vli;
+ s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
+ break;
+
+ case SEQ_INDEX_UNCOMPRESSED:
+ s->index.hash.uncompressed += s->vli;
+ s->index.hash.crc32 = xz_crc32(
+ (const uint8_t *)&s->index.hash,
+ sizeof(s->index.hash),
+ s->index.hash.crc32);
+ --s->index.count;
+ s->index.sequence = SEQ_INDEX_UNPADDED;
+ break;
+ }
+ } while (s->index.count > 0);
+
+ return XZ_STREAM_END;
}
/*
@@ -2865,23 +2865,23 @@ static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
* The "bits" argument allows using the same code for both CRC32 and CRC64.
*/
static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
- uint32_t bits)
+ uint32_t bits)
{
- do {
- if (b->in_pos == b->in_size)
- return XZ_OK;
+ do {
+ if (b->in_pos == b->in_size)
+ return XZ_OK;
- if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
- return XZ_DATA_ERROR;
+ if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
+ return XZ_DATA_ERROR;
- s->pos += 8;
+ s->pos += 8;
- } while (s->pos < bits);
+ } while (s->pos < bits);
- s->crc = 0;
- s->pos = 0;
+ s->crc = 0;
+ s->pos = 0;
- return XZ_STREAM_END;
+ return XZ_STREAM_END;
}
/*
@@ -2890,338 +2890,338 @@ static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
*/
static int check_skip(struct xz_dec *s, struct xz_buf *b)
{
- while (s->pos < check_sizes[s->check_type]) {
- if (b->in_pos == b->in_size) return 0;
+ while (s->pos < check_sizes[s->check_type]) {
+ if (b->in_pos == b->in_size) return 0;
- ++b->in_pos;
- ++s->pos;
- }
+ ++b->in_pos;
+ ++s->pos;
+ }
- s->pos = 0;
+ s->pos = 0;
- return 1;
+ return 1;
}
/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
static enum xz_ret dec_stream_header(struct xz_dec *s)
{
- if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
- return XZ_FORMAT_ERROR;
+ if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
+ return XZ_FORMAT_ERROR;
- if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
- != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
- return XZ_DATA_ERROR;
+ if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
+ != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
+ return XZ_DATA_ERROR;
- if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
- return XZ_OPTIONS_ERROR;
+ if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
+ return XZ_OPTIONS_ERROR;
- /*
- * Of integrity checks, we support none (Check ID = 0),
- * CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
- * However, if XZ_DEC_ANY_CHECK is defined, we will accept other
- * check types too, but then the check won't be verified and
- * a warning (XZ_UNSUPPORTED_CHECK) will be given.
- */
- s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
+ /*
+ * Of integrity checks, we support none (Check ID = 0),
+ * CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
+ * However, if XZ_DEC_ANY_CHECK is defined, we will accept other
+ * check types too, but then the check won't be verified and
+ * a warning (XZ_UNSUPPORTED_CHECK) will be given.
+ */
+ s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
- if (s->check_type > XZ_CHECK_MAX)
- return XZ_OPTIONS_ERROR;
+ if (s->check_type > XZ_CHECK_MAX)
+ return XZ_OPTIONS_ERROR;
- if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
- return XZ_UNSUPPORTED_CHECK;
+ if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
+ return XZ_UNSUPPORTED_CHECK;
- return XZ_OK;
+ return XZ_OK;
}
/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
static enum xz_ret dec_stream_footer(struct xz_dec *s)
{
- if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
- return XZ_DATA_ERROR;
+ if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
+ return XZ_DATA_ERROR;
- if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
- return XZ_DATA_ERROR;
+ if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
+ return XZ_DATA_ERROR;
- /*
- * Validate Backward Size. Note that we never added the size of the
- * Index CRC32 field to s->index.size, thus we use s->index.size / 4
- * instead of s->index.size / 4 - 1.
- */
- if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
- return XZ_DATA_ERROR;
+ /*
+ * Validate Backward Size. Note that we never added the size of the
+ * Index CRC32 field to s->index.size, thus we use s->index.size / 4
+ * instead of s->index.size / 4 - 1.
+ */
+ if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
+ return XZ_DATA_ERROR;
- if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
- return XZ_DATA_ERROR;
+ if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
+ return XZ_DATA_ERROR;
- /*
- * Use XZ_STREAM_END instead of XZ_OK to be more convenient
- * for the caller.
- */
- return XZ_STREAM_END;
+ /*
+ * Use XZ_STREAM_END instead of XZ_OK to be more convenient
+ * for the caller.
+ */
+ return XZ_STREAM_END;
}
/* Decode the Block Header and initialize the filter chain. */
static enum xz_ret dec_block_header(struct xz_dec *s)
{
- enum xz_ret ret;
+ enum xz_ret ret;
- /*
- * Validate the CRC32. We know that the temp buffer is at least
- * eight bytes so this is safe.
- */
- s->temp.size -= 4;
- if (xz_crc32(s->temp.buf, s->temp.size, 0)
- != get_le32(s->temp.buf + s->temp.size))
- return XZ_DATA_ERROR;
+ /*
+ * Validate the CRC32. We know that the temp buffer is at least
+ * eight bytes so this is safe.
+ */
+ s->temp.size -= 4;
+ if (xz_crc32(s->temp.buf, s->temp.size, 0)
+ != get_le32(s->temp.buf + s->temp.size))
+ return XZ_DATA_ERROR;
- s->temp.pos = 2;
+ s->temp.pos = 2;
- /*
- * Catch unsupported Block Flags. We support only one or two filters
- * in the chain, so we catch that with the same test.
- */
+ /*
+ * Catch unsupported Block Flags. We support only one or two filters
+ * in the chain, so we catch that with the same test.
+ */
#ifdef XZ_DEC_BCJ
- if (s->temp.buf[1] & 0x3E)
+ if (s->temp.buf[1] & 0x3E)
#else
- if (s->temp.buf[1] & 0x3F)
+ if (s->temp.buf[1] & 0x3F)
#endif
- return XZ_OPTIONS_ERROR;
-
- /* Compressed Size */
- if (s->temp.buf[1] & 0x40) {
- if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
- != XZ_STREAM_END)
- return XZ_DATA_ERROR;
-
- s->block_header.compressed = s->vli;
- } else {
- s->block_header.compressed = VLI_UNKNOWN;
- }
-
- /* Uncompressed Size */
- if (s->temp.buf[1] & 0x80) {
- if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
- != XZ_STREAM_END)
- return XZ_DATA_ERROR;
-
- s->block_header.uncompressed = s->vli;
- } else {
- s->block_header.uncompressed = VLI_UNKNOWN;
- }
+ return XZ_OPTIONS_ERROR;
+
+ /* Compressed Size */
+ if (s->temp.buf[1] & 0x40) {
+ if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
+ != XZ_STREAM_END)
+ return XZ_DATA_ERROR;
+
+ s->block_header.compressed = s->vli;
+ } else {
+ s->block_header.compressed = VLI_UNKNOWN;
+ }
+
+ /* Uncompressed Size */
+ if (s->temp.buf[1] & 0x80) {
+ if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
+ != XZ_STREAM_END)
+ return XZ_DATA_ERROR;
+
+ s->block_header.uncompressed = s->vli;
+ } else {
+ s->block_header.uncompressed = VLI_UNKNOWN;
+ }
#ifdef XZ_DEC_BCJ
- /* If there are two filters, the first one must be a BCJ filter. */
- s->bcj_active = s->temp.buf[1] & 0x01;
- if (s->bcj_active) {
- if (s->temp.size - s->temp.pos < 2)
- return XZ_OPTIONS_ERROR;
-
- ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
- if (ret != XZ_OK)
- return ret;
-
- /*
- * We don't support custom start offset,
- * so Size of Properties must be zero.
- */
- if (s->temp.buf[s->temp.pos++] != 0x00)
- return XZ_OPTIONS_ERROR;
- }
+ /* If there are two filters, the first one must be a BCJ filter. */
+ s->bcj_active = s->temp.buf[1] & 0x01;
+ if (s->bcj_active) {
+ if (s->temp.size - s->temp.pos < 2)
+ return XZ_OPTIONS_ERROR;
+
+ ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
+ if (ret != XZ_OK)
+ return ret;
+
+ /*
+ * We don't support custom start offset,
+ * so Size of Properties must be zero.
+ */
+ if (s->temp.buf[s->temp.pos++] != 0x00)
+ return XZ_OPTIONS_ERROR;
+ }
#endif
- /* Valid Filter Flags always take at least two bytes. */
- if (s->temp.size - s->temp.pos < 2)
- return XZ_DATA_ERROR;
+ /* Valid Filter Flags always take at least two bytes. */
+ if (s->temp.size - s->temp.pos < 2)
+ return XZ_DATA_ERROR;
- /* Filter ID = LZMA2 */
- if (s->temp.buf[s->temp.pos++] != 0x21)
- return XZ_OPTIONS_ERROR;
+ /* Filter ID = LZMA2 */
+ if (s->temp.buf[s->temp.pos++] != 0x21)
+ return XZ_OPTIONS_ERROR;
- /* Size of Properties = 1-byte Filter Properties */
- if (s->temp.buf[s->temp.pos++] != 0x01)
- return XZ_OPTIONS_ERROR;
+ /* Size of Properties = 1-byte Filter Properties */
+ if (s->temp.buf[s->temp.pos++] != 0x01)
+ return XZ_OPTIONS_ERROR;
- /* Filter Properties contains LZMA2 dictionary size. */
- if (s->temp.size - s->temp.pos < 1)
- return XZ_DATA_ERROR;
+ /* Filter Properties contains LZMA2 dictionary size. */
+ if (s->temp.size - s->temp.pos < 1)
+ return XZ_DATA_ERROR;
- ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
- if (ret != XZ_OK)
- return ret;
+ ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
+ if (ret != XZ_OK)
+ return ret;
- /* The rest must be Header Padding. */
- while (s->temp.pos < s->temp.size)
- if (s->temp.buf[s->temp.pos++] != 0x00)
- return XZ_OPTIONS_ERROR;
+ /* The rest must be Header Padding. */
+ while (s->temp.pos < s->temp.size)
+ if (s->temp.buf[s->temp.pos++] != 0x00)
+ return XZ_OPTIONS_ERROR;
- s->temp.pos = 0;
- s->block.compressed = 0;
- s->block.uncompressed = 0;
+ s->temp.pos = 0;
+ s->block.compressed = 0;
+ s->block.uncompressed = 0;
- return XZ_OK;
+ return XZ_OK;
}
static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
{
- enum xz_ret ret;
-
- /*
- * Store the start position for the case when we are in the middle
- * of the Index field.
- */
- s->in_start = b->in_pos;
-
- for (;;) {
- switch (s->sequence) {
- case SEQ_STREAM_HEADER:
- /*
- * Stream Header is copied to s->temp, and then
- * decoded from there. This way if the caller
- * gives us only little input at a time, we can
- * still keep the Stream Header decoding code
- * simple. Similar approach is used in many places
- * in this file.
- */
- if (!fill_temp(s, b))
- return XZ_OK;
-
- /*
- * If dec_stream_header() returns
- * XZ_UNSUPPORTED_CHECK, it is still possible
- * to continue decoding if working in multi-call
- * mode. Thus, update s->sequence before calling
- * dec_stream_header().
- */
- s->sequence = SEQ_BLOCK_START;
-
- ret = dec_stream_header(s);
- if (ret != XZ_OK)
- return ret;
-
- case SEQ_BLOCK_START:
- /* We need one byte of input to continue. */
- if (b->in_pos == b->in_size)
- return XZ_OK;
-
- /* See if this is the beginning of the Index field. */
- if (b->in[b->in_pos] == 0) {
- s->in_start = b->in_pos++;
- s->sequence = SEQ_INDEX;
- break;
- }
-
- /*
- * Calculate the size of the Block Header and
- * prepare to decode it.
- */
- s->block_header.size
- = ((uint32_t)b->in[b->in_pos] + 1) * 4;
-
- s->temp.size = s->block_header.size;
- s->temp.pos = 0;
- s->sequence = SEQ_BLOCK_HEADER;
-
- case SEQ_BLOCK_HEADER:
- if (!fill_temp(s, b))
- return XZ_OK;
-
- ret = dec_block_header(s);
- if (ret != XZ_OK)
- return ret;
-
- s->sequence = SEQ_BLOCK_UNCOMPRESS;
-
- case SEQ_BLOCK_UNCOMPRESS:
- ret = dec_block(s, b);
- if (ret != XZ_STREAM_END)
- return ret;
-
- s->sequence = SEQ_BLOCK_PADDING;
-
- case SEQ_BLOCK_PADDING:
- /*
- * Size of Compressed Data + Block Padding
- * must be a multiple of four. We don't need
- * s->block.compressed for anything else
- * anymore, so we use it here to test the size
- * of the Block Padding field.
- */
- while (s->block.compressed & 3) {
- if (b->in_pos == b->in_size)
- return XZ_OK;
-
- if (b->in[b->in_pos++] != 0)
- return XZ_DATA_ERROR;
-
- ++s->block.compressed;
- }
-
- s->sequence = SEQ_BLOCK_CHECK;
-
- case SEQ_BLOCK_CHECK:
- if (s->check_type == XZ_CHECK_CRC32) {
- ret = crc_validate(s, b, 32);
- if (ret != XZ_STREAM_END)
- return ret;
- }
- else if (IS_CRC64(s->check_type)) {
- ret = crc_validate(s, b, 64);
- if (ret != XZ_STREAM_END)
- return ret;
- }
- else if (!check_skip(s, b)) {
- return XZ_OK;
- }
-
- s->sequence = SEQ_BLOCK_START;
- break;
-
- case SEQ_INDEX:
- ret = dec_index(s, b);
- if (ret != XZ_STREAM_END)
- return ret;
-
- s->sequence = SEQ_INDEX_PADDING;
-
- case SEQ_INDEX_PADDING:
- while ((s->index.size + (b->in_pos - s->in_start))
- & 3) {
- if (b->in_pos == b->in_size) {
- index_update(s, b);
- return XZ_OK;
- }
-
- if (b->in[b->in_pos++] != 0)
- return XZ_DATA_ERROR;
- }
-
- /* Finish the CRC32 value and Index size. */
- index_update(s, b);
-
- /* Compare the hashes to validate the Index field. */
- if (!memeq(&s->block.hash, &s->index.hash,
- sizeof(s->block.hash)))
- return XZ_DATA_ERROR;
-
- s->sequence = SEQ_INDEX_CRC32;
-
- case SEQ_INDEX_CRC32:
- ret = crc_validate(s, b, 32);
- if (ret != XZ_STREAM_END)
- return ret;
-
- s->temp.size = STREAM_HEADER_SIZE;
- s->sequence = SEQ_STREAM_FOOTER;
-
- case SEQ_STREAM_FOOTER:
- if (!fill_temp(s, b))
- return XZ_OK;
-
- return dec_stream_footer(s);
- }
- }
-
- /* Never reached */
+ enum xz_ret ret;
+
+ /*
+ * Store the start position for the case when we are in the middle
+ * of the Index field.
+ */
+ s->in_start = b->in_pos;
+
+ for (;;) {
+ switch (s->sequence) {
+ case SEQ_STREAM_HEADER:
+ /*
+ * Stream Header is copied to s->temp, and then
+ * decoded from there. This way if the caller
+ * gives us only little input at a time, we can
+ * still keep the Stream Header decoding code
+ * simple. Similar approach is used in many places
+ * in this file.
+ */
+ if (!fill_temp(s, b))
+ return XZ_OK;
+
+ /*
+ * If dec_stream_header() returns
+ * XZ_UNSUPPORTED_CHECK, it is still possible
+ * to continue decoding if working in multi-call
+ * mode. Thus, update s->sequence before calling
+ * dec_stream_header().
+ */
+ s->sequence = SEQ_BLOCK_START;
+
+ ret = dec_stream_header(s);
+ if (ret != XZ_OK)
+ return ret;
+
+ case SEQ_BLOCK_START:
+ /* We need one byte of input to continue. */
+ if (b->in_pos == b->in_size)
+ return XZ_OK;
+
+ /* See if this is the beginning of the Index field. */
+ if (b->in[b->in_pos] == 0) {
+ s->in_start = b->in_pos++;
+ s->sequence = SEQ_INDEX;
+ break;
+ }
+
+ /*
+ * Calculate the size of the Block Header and
+ * prepare to decode it.
+ */
+ s->block_header.size
+ = ((uint32_t)b->in[b->in_pos] + 1) * 4;
+
+ s->temp.size = s->block_header.size;
+ s->temp.pos = 0;
+ s->sequence = SEQ_BLOCK_HEADER;
+
+ case SEQ_BLOCK_HEADER:
+ if (!fill_temp(s, b))
+ return XZ_OK;
+
+ ret = dec_block_header(s);
+ if (ret != XZ_OK)
+ return ret;
+
+ s->sequence = SEQ_BLOCK_UNCOMPRESS;
+
+ case SEQ_BLOCK_UNCOMPRESS:
+ ret = dec_block(s, b);
+ if (ret != XZ_STREAM_END)
+ return ret;
+
+ s->sequence = SEQ_BLOCK_PADDING;
+
+ case SEQ_BLOCK_PADDING:
+ /*
+ * Size of Compressed Data + Block Padding
+ * must be a multiple of four. We don't need
+ * s->block.compressed for anything else
+ * anymore, so we use it here to test the size
+ * of the Block Padding field.
+ */
+ while (s->block.compressed & 3) {
+ if (b->in_pos == b->in_size)
+ return XZ_OK;
+
+ if (b->in[b->in_pos++] != 0)
+ return XZ_DATA_ERROR;
+
+ ++s->block.compressed;
+ }
+
+ s->sequence = SEQ_BLOCK_CHECK;
+
+ case SEQ_BLOCK_CHECK:
+ if (s->check_type == XZ_CHECK_CRC32) {
+ ret = crc_validate(s, b, 32);
+ if (ret != XZ_STREAM_END)
+ return ret;
+ }
+ else if (IS_CRC64(s->check_type)) {
+ ret = crc_validate(s, b, 64);
+ if (ret != XZ_STREAM_END)
+ return ret;
+ }
+ else if (!check_skip(s, b)) {
+ return XZ_OK;
+ }
+
+ s->sequence = SEQ_BLOCK_START;
+ break;
+
+ case SEQ_INDEX:
+ ret = dec_index(s, b);
+ if (ret != XZ_STREAM_END)
+ return ret;
+
+ s->sequence = SEQ_INDEX_PADDING;
+
+ case SEQ_INDEX_PADDING:
+ while ((s->index.size + (b->in_pos - s->in_start))
+ & 3) {
+ if (b->in_pos == b->in_size) {
+ index_update(s, b);
+ return XZ_OK;
+ }
+
+ if (b->in[b->in_pos++] != 0)
+ return XZ_DATA_ERROR;
+ }
+
+ /* Finish the CRC32 value and Index size. */
+ index_update(s, b);
+
+ /* Compare the hashes to validate the Index field. */
+ if (!memeq(&s->block.hash, &s->index.hash,
+ sizeof(s->block.hash)))
+ return XZ_DATA_ERROR;
+
+ s->sequence = SEQ_INDEX_CRC32;
+
+ case SEQ_INDEX_CRC32:
+ ret = crc_validate(s, b, 32);
+ if (ret != XZ_STREAM_END)
+ return ret;
+
+ s->temp.size = STREAM_HEADER_SIZE;
+ s->sequence = SEQ_STREAM_FOOTER;
+
+ case SEQ_STREAM_FOOTER:
+ if (!fill_temp(s, b))
+ return XZ_OK;
+
+ return dec_stream_footer(s);
+ }
+ }
+
+ /* Never reached */
}
/*
@@ -3251,92 +3251,92 @@ static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
*/
enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
{
- size_t in_start;
- size_t out_start;
- enum xz_ret ret;
+ size_t in_start;
+ size_t out_start;
+ enum xz_ret ret;
- if (DEC_IS_SINGLE(s->mode))
- xz_dec_reset(s);
+ if (DEC_IS_SINGLE(s->mode))
+ xz_dec_reset(s);
- in_start = b->in_pos;
- out_start = b->out_pos;
- ret = dec_main(s, b);
+ in_start = b->in_pos;
+ out_start = b->out_pos;
+ ret = dec_main(s, b);
- if (DEC_IS_SINGLE(s->mode)) {
- if (ret == XZ_OK)
- ret = b->in_pos == b->in_size
- ? XZ_DATA_ERROR : XZ_BUF_ERROR;
+ if (DEC_IS_SINGLE(s->mode)) {
+ if (ret == XZ_OK)
+ ret = b->in_pos == b->in_size
+ ? XZ_DATA_ERROR : XZ_BUF_ERROR;
- if (ret != XZ_STREAM_END) {
- b->in_pos = in_start;
- b->out_pos = out_start;
- }
+ if (ret != XZ_STREAM_END) {
+ b->in_pos = in_start;
+ b->out_pos = out_start;
+ }
- } else if (ret == XZ_OK && in_start == b->in_pos
- && out_start == b->out_pos) {
- if (s->allow_buf_error)
- ret = XZ_BUF_ERROR;
+ } else if (ret == XZ_OK && in_start == b->in_pos
+ && out_start == b->out_pos) {
+ if (s->allow_buf_error)
+ ret = XZ_BUF_ERROR;
- s->allow_buf_error = 1;
- } else {
- s->allow_buf_error = 0;
- }
+ s->allow_buf_error = 1;
+ } else {
+ s->allow_buf_error = 0;
+ }
- return ret;
+ return ret;
}
struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max)
{
- struct xz_dec *s = malloc(sizeof(*s));
- if (s == NULL)
- return NULL;
+ struct xz_dec *s = malloc(sizeof(*s));
+ if (s == NULL)
+ return NULL;
- s->mode = mode;
+ s->mode = mode;
#ifdef XZ_DEC_BCJ
- s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
- if (s->bcj == NULL)
- goto error_bcj;
+ s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
+ if (s->bcj == NULL)
+ goto error_bcj;
#endif
- s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
- if (s->lzma2 == NULL)
- goto error_lzma2;
+ s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
+ if (s->lzma2 == NULL)
+ goto error_lzma2;
- xz_dec_reset(s);
- return s;
+ xz_dec_reset(s);
+ return s;
error_lzma2:
#ifdef XZ_DEC_BCJ
- free(s->bcj);
+ free(s->bcj);
error_bcj:
#endif
- free(s);
- return NULL;
+ free(s);
+ return NULL;
}
void xz_dec_reset(struct xz_dec *s)
{
- s->sequence = SEQ_STREAM_HEADER;
- s->allow_buf_error = 0;
- s->pos = 0;
- s->crc = 0;
- memset(&s->block, 0, sizeof(s->block));
- memset(&s->index, 0, sizeof(s->index));
- s->temp.pos = 0;
- s->temp.size = STREAM_HEADER_SIZE;
+ s->sequence = SEQ_STREAM_HEADER;
+ s->allow_buf_error = 0;
+ s->pos = 0;
+ s->crc = 0;
+ memset(&s->block, 0, sizeof(s->block));
+ memset(&s->index, 0, sizeof(s->index));
+ s->temp.pos = 0;
+ s->temp.size = STREAM_HEADER_SIZE;
}
void xz_dec_end(struct xz_dec *s)
{
- if (s != NULL) {
- if (DEC_IS_MULTI((s->lzma2)->dict.mode))
- free((s->lzma2)->dict.buf);
- free(s->lzma2);
+ if (s != NULL) {
+ if (DEC_IS_MULTI((s->lzma2)->dict.mode))
+ free((s->lzma2)->dict.buf);
+ free(s->lzma2);
#ifdef XZ_DEC_BCJ
- free(s->bcj);
+ free(s->bcj);
#endif
- free(s);
- }
+ free(s);
+ }
}