/* vi: set ts=4: * * mke2fs.c - Create an ext2 filesystem image. * * Copyright 2006 Rob Landley */ #include "toys.h" #define TT toy.mke2fs // b - block size (1024, 2048, 4096) // F - force (run on mounted device or non-block device) // i - bytes per inode // N - number of inodes // m - reserved blocks percentage // n - Don't write // q - quiet // L - volume label // M - last mounted path // o - creator os // j - create journal // J - journal options (size=1024-102400 blocks,device=) // device=/dev/blah or LABEL=label UUID=uuid // E - extended options (stride=stripe-size blocks) // O - none,dir_index,filetype,has_journal,journal_dev,sparse_super // According to http://www.opengroup.org/onlinepubs/9629399/apdxa.htm // we should generate a uuid structure by reading a clock with 100 nanosecond // precision, normalizing it to the start of the gregorian calendar in 1582, // and looking up our eth0 mac address. // // On the other hand, we have 128 bits to come up with a unique identifier, of // which 6 have a defined value. /dev/urandom it is. static void create_uuid(char *uuid) { // Read 128 random bytes int fd = xopen("/dev/urandom", O_RDONLY); xreadall(fd, uuid, 16); close(fd); // Claim to be a DCE format UUID. uuid[6] = (uuid[6] & 0x0F) | 0x40; uuid[8] = (uuid[8] & 0x3F) | 0x80; // rfc2518 section 6.4.1 suggests if we're not using a macaddr, we should // set bit 1 of the node ID, which is the mac multicast bit. This means we // should never collide with anybody actually using a macaddr. uuid[11] = uuid[11] | 128; } // Fill out superblock and TT static void init_superblock(struct ext2_superblock *sb) { uint32_t temp; // Set log_block_size and log_frag_size. for (temp = 0; temp < 4; temp++) if (TT.blocksize == 1024<log_block_size = sb->log_frag_size = SWAP_LE32(temp); // Fill out blocks_count, r_blocks_count, first_data_block sb->blocks_count = SWAP_LE32(TT.blocks); if (!TT.reserved_percent) TT.reserved_percent = 5; temp = (TT.blocks * (uint64_t)TT.reserved_percent) /100; sb->r_blocks_count = SWAP_LE32(temp); sb->first_data_block = TT.blocksize == SWAP_LE32(1024 ? 1 : 0); // Set blocks_per_group and frags_per_group, which is the size of an // allocation bitmap that fits in one block (I.E. how many bits per block)? temp = TT.blocksize*8; sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(temp); // How many block groups do we need? (Round up avoiding integer overflow.) TT.groups = (TT.blocks)/temp; if (TT.blocks & (temp-1)) TT.groups++; // Figure out how many inodes we need. if (!TT.inodes) { if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192; TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode; } // Figure out inodes per group, rounded up to block size. // How many blocks of inodes total, rounded up temp = TT.inodes / (TT.blocksize/sizeof(struct ext2_inode)); if (TT.inodes & (TT.blocksize-1)) temp++; // How many blocks of inodes per group, again rounded up TT.inodes = temp / TT.groups; if (temp & (TT.groups-1)) TT.inodes++; // How many inodes per group is that? TT.inodes *= (TT.blocksize/sizeof(struct ext2_inode)); // Set inodes_per_group and total inodes_count sb->inodes_per_group = SWAP_LE32(TT.inodes); sb->inodes_count = SWAP_LE32(TT.inodes *= TT.groups); // Fill out the rest of the superblock. sb->max_mnt_count=0xFFFF; sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL)); sb->magic = SWAP_LE32(0xEF53); sb->state = sb->errors = SWAP_LE16(1); sb->rev_level = SWAP_LE32(1); sb->inode_size = SWAP_LE16(sizeof(struct ext2_inode)); sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE); sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER); create_uuid(sb->uuid); // If we're called as mke3fs or mkfs.ext3, do a journal. //if (strchr(toys.which->name,'3')) // sb->feature_compat = SWAP_LE32(EXT3_FEATURE_COMPAT_HAS_JOURNAL); } // Number of blocks used in this group by superblock/group list backup. // Returns 0 if this group doesn't have a superblock backup. static int group_superblock_used(uint32_t group) { int used ; if (0) return 0; // todo, which groups have no superblock? // How blocks does the group table take up? used = TT.groups * sizeof(struct ext2_group); used += TT.blocksize - 1; used /= TT.blocksize; // Plus the superblock itself. used++; // And a corner case. if (!group && TT.blocksize == 1024) used++; return used; } int mke2fs_main(void) { int i, temp; off_t length; // Handle command line arguments. if (toys.optargs[1]) { sscanf(toys.optargs[1], "%u", &TT.blocks); temp = O_RDWR|O_CREAT; } else temp = O_RDWR; // TODO: collect gene2fs list, calculate requirements. // TODO: Check if filesystem is mounted here // For mke?fs, open file. For gene?fs, create file. TT.fsfd = xcreate(*toys.optargs, temp, 0777); // Determine appropriate block size and block count from file length. length = fdlength(TT.fsfd); if (length<1) error_exit("gene2fs is a todo item"); if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096; if (!TT.blocks) TT.blocks = length/TT.blocksize; // Skip the first 1k to avoid the boot sector (if any). Use this to // figure out if this file is seekable. if(-1 == lseek(TT.fsfd, 1024, SEEK_SET)) { TT.noseek=1; xwrite(TT.fsfd, &TT.sb, 1024); } // Initialize superblock structure init_superblock(&TT.sb); // Loop through block groups. for (i=0; i 1024) temp -= 1024; memset(toybuf, 0, TT.blocksize); xwrite(TT.fsfd, toybuf, temp); // Loop through groups to write group descriptor table. for(j=0; j