/* vi: set ts=4: * * mke2fs.c - Create an ext2 filesystem image. * * Copyright 2006 Rob Landley */ #include "toys.h" #define TT toy.mke2fs // b - block size (1024, 2048, 4096) // F - force (run on mounted device or non-block device) // i - bytes per inode // N - number of inodes // m - reserved blocks percentage // n - Don't write // q - quiet // L - volume label // M - last mounted path // o - creator os // j - create journal // J - journal options (size=1024-102400 blocks,device=) // device=/dev/blah or LABEL=label UUID=uuid // E - extended options (stride=stripe-size blocks) // O - none,dir_index,filetype,has_journal,journal_dev,sparse_super // According to http://www.opengroup.org/onlinepubs/9629399/apdxa.htm // we should generate a uuid structure by reading a clock with 100 nanosecond // precision, normalizing it to the start of the gregorian calendar in 1582, // and looking up our eth0 mac address. // // On the other hand, we have 128 bits to come up with a unique identifier, of // which 6 have a defined value. /dev/urandom it is. void create_uuid(char *uuid) { // Read 128 random bytes int fd = xopen("/dev/urandom", O_RDONLY); xreadall(fd, uuid, 16); close(fd); // Claim to be a DCE format UUID. uuid[6] = (uuid[6] & 0x0F) | 0x40; uuid[8] = (uuid[8] & 0x3F) | 0x80; // rfc2518 section 6.4.1 suggests if we're not using a macaddr, we should // set bit 1 of the node ID, which is the mac multicast bit. This means we // should never collide with anybody actually using a macaddr. uuid[11] = uuid[11] | 128; } int mke2fs_main(void) { struct ext2_superblock *sb = xzalloc(sizeof(struct ext2_superblock)); uint32_t temp; off_t length; // Handle command line arguments. if (toys.optargs[1]) { sscanf(toys.optargs[1], "%u", &TT.blocks); temp = O_RDWR|O_CREAT; } else temp = O_RDWR; // TODO: Check if filesystem is mounted here // For mke?fs, open file. For gene?fs, create file. length = fdlength(TT.fsfd = xcreate(*toys.optargs, temp, 0777)); // TODO: collect gene2fs list, calculate requirements. // Fill out superblock structure // Determine appropriate block size, set log_block_size and log_frag_size. if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096; if (TT.blocksize == 1024) temp = 0; else if (TT.blocksize == 2048) temp = 1; else if (TT.blocksize == 4096) temp = 2; else error_exit("bad blocksize"); sb->log_block_size = sb->log_frag_size = SWAP_LE32(temp); // Fill out blocks_count, inodes_count, r_blocks_count if (!TT.blocks) TT.blocks = length/TT.blocksize; sb->blocks_count = SWAP_LE32(TT.blocks); if (!TT.inodes) { if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192; TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode; } sb->inodes_count = SWAP_LE32(TT.inodes); if (!TT.reserved_percent) TT.reserved_percent = 5; temp = (TT.blocks * (uint64_t)TT.reserved_percent) /100; sb->r_blocks_count = SWAP_LE32(temp); // Set blocks_per_group and frags_per_group, which is the size of an // allocation bitmap that fits in one block (I.E. how many bits per block)? temp = TT.blocksize*8; sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(temp); // Set inodes_per_group TT.groups = (TT.blocks)/temp; if (TT.blocks & (temp-1)) TT.groups++; // Round up without int overflow. temp = TT.inodes/TT.groups; if (TT.blocks & (TT.groups-1)) TT.blocks++; sb->inodes_per_group = SWAP_LE32(temp); sb->max_mnt_count=0xFFFF; sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL)); sb->magic = SWAP_LE32(0xEF53); sb->state = sb->errors = SWAP_LE16(1); sb->rev_level = SWAP_LE32(1); sb->inode_size = sizeof(struct ext2_inode); sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE); sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER); create_uuid(sb->uuid); // If we're called as mke3fs or mkfs.ext3, do a journal. //if (strchr(toys.which->name,'3')) // sb->feature_compat |= EXT3_FEATURE_COMPAT_HAS_JOURNAL; // We skip the first 1k (to avoid the boot sector, if any). Use this to // figure out if this file is seekable. if(-1 == lseek(TT.fsfd, 1024, SEEK_SET)) perror_exit("lseek"); //{ TT.noseek=1; xwrite(TT.fsfd, sb, 1024); } // Write superblock to disk. xwrite(TT.fsfd, sb, sizeof(struct ext2_superblock)); // 4096-1024 return 0; }