/* * Based on the public domain SHA-1 in C by Steve Reid * from http://www.mirrors.wiretapped.net/security/cryptography/hashes/sha1/ */ /* #define LITTLE_ENDIAN * This should be #define'd if true. */ /* #define SHA1HANDSOFF * Copies data before messing with it. */ #define LITTLE_ENDIAN #include #include #include struct sha1 { uint32_t state[5]; uint64_t count; union { unsigned char c[64]; uint32_t i[16]; } buffer; }; void sha1_init(struct sha1 *this); void sha1_transform(struct sha1 *this); void sha1_update(struct sha1 *this, unsigned char *data, unsigned int len); void sha1_final(struct sha1 *this, unsigned char digest[20]); #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* blk0() and blk() perform the initial expand. */ /* I got the idea of expanding during the round function from SSLeay */ #ifdef LITTLE_ENDIAN #define blk0(i) (block[i] = (rol(block[i],24)&0xFF00FF00) \ |(rol(block[i],8)&0x00FF00FF)) #else #define blk0(i) block[i] #endif #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ ^block[(i+2)&15]^block[i&15],1)) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); void printy(unsigned char *this) { int i; for (i = 0; i < 20; i++) printf("%02x", this[i]); putchar('\n'); } /* Hash a single 512-bit block. This is the core of the algorithm. */ void sha1_transform(struct sha1 *this) { unsigned int a, b, c, d, e; uint32_t *block = this->buffer.i; /* Copy context->state[] to working vars */ a = this->state[0]; b = this->state[1]; c = this->state[2]; d = this->state[3]; e = this->state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ this->state[0] += a; this->state[1] += b; this->state[2] += c; this->state[3] += d; this->state[4] += e; printy(this->state); /* Wipe variables */ a = b = c = d = e = 0; } /* SHA1Init - Initialize new context */ void sha1_init(struct sha1 *this) { /* SHA1 initialization constants */ this->state[0] = 0x67452301; this->state[1] = 0xEFCDAB89; this->state[2] = 0x98BADCFE; this->state[3] = 0x10325476; this->state[4] = 0xC3D2E1F0; this->count = 0; } /* Run your data through this function. */ void sha1_update(struct sha1 *this, unsigned char *data, unsigned int len) { unsigned int i, j; j = this->count & 63; this->count += len; // Enough data to process a frame? if ((j + len) > 63) { i = 64-j; memcpy(this->buffer.c + j, data, i); sha1_transform(this); for ( ; i + 63 < len; i += 64) { memcpy(this->buffer.c, data + i, 64); sha1_transform(this); } j = 0; } else i = 0; // Grab remaining chunk memcpy(this->buffer.c + j, data + i, len - i); } /* Add padding and return the message digest. */ void sha1_final(struct sha1 *this, unsigned char digest[20]) { uint64_t count = this->count << 3; unsigned int i; unsigned char buf; // End the message by appending a "1" bit to the data, ending with the // message size (in bits, big endian), and adding enough zero bits in // between to pad to the end of the next 64-byte frame. Since our input // up to now has been in whole bytes, we can deal with bytes here too. buf = 0x80; do { sha1_update(this, &buf, 1); buf = 0; } while ((this->count & 63) != 56); for (i = 0; i < 8; i++) this->buffer.c[56+i] = count >> (8*(7-i)); sha1_transform(this); for (i = 0; i < 20; i++) { digest[i] = (unsigned char) ((this->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } /* Wipe variables */ i = 0; } /*************************************************************/ int main(int argc, char** argv) { int i, j; struct sha1 this; unsigned char digest[20], buffer[16384]; FILE* file; if (argc < 2) { file = stdin; } else { if (!(file = fopen(argv[1], "rb"))) { fputs("Unable to open file.", stderr); exit(-1); } } sha1_init(&this); while (!feof(file)) { /* note: what if ferror(file) */ i = fread(buffer, 1, 16384, file); sha1_update(&this, buffer, i); } sha1_final(&this, digest); fclose(file); printy(digest); exit(0); }