Code style

The primary goal of toybox is _simple_ code. Keeping the code small is second, with speed and lots of features coming in somewhere after that. (For more on that, see the design page.)

A simple implementation usually takes up fewer lines of source code, meaning more code can fit on the screen at once, meaning the programmer can see more of it on the screen and thus keep more if in their head at once. This helps code auditing and thus reduces bugs. That said, sometimes being more explicit is preferable to being clever enough to outsmart yourself: don't be so terse your code is unreadable.

Toybox source uses two spaces per indentation level, and wraps at 80 columns.

Gotos are allowed for error handling, and for breaking out of nested loops. In general, a goto should only jump forward (not back), and should either jump to the end of an outer loop, or to error handling code at the end of the function. Goto labels are never indented: they override the block structure of the file. Putting them at the left edge makes them easy to spot as overrides to the normal flow of control, which they are.

Building Toybox

Toybox is configured using the Kconfig language pioneered by the Linux kernel, and adopted by many other projects (uClibc, OpenEmbedded, etc). This generates a ".config" file containing the selected options, which controls which features are included when compiling toybox.

Each configuration option has a default value. The defaults indicate the "maximum sane configuration", I.E. if the feature defaults to "n" then it either isn't complete or is a special-purpose option (such as debugging code) that isn't intended for general purpose use.

The standard build invocation is:

Type "make help" to see all available build options.

The file "configure" contains a number of environment variable definitions which influence the build, such as specifying which compiler to use or where to install the resulting binaries. This file is included by the build, but accepts existing definitions of the environment variables, so it may be sourced or modified by the developer before building and the definitions exported to the environment will take precedence.

(To clarify: "configure" describes the build and installation environment, ".config" lists the features selected by defconfig/menuconfig.)

Running a command

main

The toybox main() function is at the end of main.c at the top level. It has two possible codepaths, only one of which is configured into any given build of toybox.

If CONFIG_SINGLE is selected, toybox is configured to contain only a single command, so most of the normal setup can be skipped. In this case the multiplexer isn't used, instead main() calls toy_singleinit() (also in main.c) to set up global state and parse command line arguments, calls the command's main function out of toy_list (in the CONFIG_SINGLE case the array has a single entry, no need to search), and if the function returns instead of exiting it flushes stdout (detecting error) and returns toys.exitval.

When CONFIG_SINGLE is not selected, main() uses basename() to find the name it was run as, shifts its argument list one to the right so it lines up with where the multiplexer function expects it, and calls toybox_main(). This leverages the multiplexer command's infrastructure to find and run the appropriate command. (A command name starting with "toybox" will recursively call toybox_main(); you can go "./toybox toybox toybox toybox ls" if you want to...)

toybox_main

The toybox_main() function is also in main,c. It handles a possible --help option ("toybox --help ls"), prints the list of available commands if no arguments were provided to the multiplexer (or with full path names if any other option is provided before a command name, ala "toybox --list"). Otherwise it calls toy_exec() on its argument list.

Note that the multiplexer is the first entry in toy_list (the rest of the list is sorted alphabetically to allow binary search), so toybox_main can cheat and just grab the first entry to quickly set up its context without searching. Since all command names go through the multiplexer at least once in the non-TOYBOX_SINGLE case, this avoids a redundant search of the list.

The toy_exec() function is also in main.c. It performs toy_find() to perform a binary search on the toy_list array to look up the command's entry by name and saves it in the global variable which, calls toy_init() to parse command line arguments and set up global state (using which->options), and calls the appropriate command's main() function (which->toy_main). On return it flushes all pending ansi FILE * I/O, detects if stdout had an error, and then calls xexit() (which uses toys.exitval).

Infrastructure

The toybox source code is in following directories:

Adding a new command

To add a new command to toybox, add a C file implementing that command under the toys directory. No other files need to be modified; the build extracts all the information it needs (such as command line arguments) from specially formatted comments and macros in the C file. (See the description of the "generated" directory for details.)

Currently there are three subdirectories under "toys", one for commands defined by the POSIX standard, one for commands defined by the Linux Standard Base, and one for all other commands. (This is just for developer convenience sorting them, the directories are otherwise functionally identical.)

An easy way to start a new command is copy the file "toys/other/hello.c" to the name of the new command, and modify this copy to implement the new command. This file is an example command meant to be used as a "skeleton" for new commands (more or less by turning every instance of "hello" into the name of your command, updating the command line arguments, globals, and help data, and then filling out its "main" function with code that does something interesting). It provides examples of all the build infrastructure (including optional elements like command line argument parsing and global variables that a "hello world" program doesn't strictly need).

Here's a checklist of steps to turn hello.c into another command:

Top level directory.

This directory contains global infrastructure.

toys.h

Each command #includes "toys.h" as part of its standard prolog. It may "#define FOR_commandname" before doing so to get some extra entries specific to this command.

This file sucks in most of the commonly used standard #includes, so individual files can just #include "toys.h" and not have to worry about stdargs.h and so on. Individual commands still need to #include special-purpose headers that may not be present on all systems (and thus would prevent toybox from building that command on such a system with that command enabled). Examples include regex support, any "linux/" or "asm/" headers, mtab support (mntent.h and sys/mount.h), and so on.

The toys.h header also defines structures for most of the global variables provided to each command by toybox_main(). These are described in detail in the description for main.c, where they are initialized.

The global variables are grouped into structures (and a union) for space savings, to more easily track the amount of memory consumed by them, so that they may be automatically cleared/initialized as needed, and so that access to global variables is more easily distinguished from access to local variables.

main.c

Contains the main() function where execution starts, plus common infrastructure to initialize global variables and select which command to run. The "toybox" multiplexer command also lives here. (This is the only command defined outside of the toys directory.)

Execution starts in main() which trims any path off of the first command name and calls toybox_main(), which calls toy_exec(), which calls toy_find() and toy_init() before calling the appropriate command's function from toy_list[] (via toys.which->toy_main()). If the command is "toybox", execution recurses into toybox_main(), otherwise the call goes to the appropriate commandname_main() from a C file in the toys directory.

The following global variables are defined in main.c:

The following functions are defined in main.c:

Config.in

Top level configuration file in a stylized variant of kconfig format. Includes generated/Config.in.

These files are directly used by "make menuconfig" to select which commands to build into toybox (thus generating a .config file), and by scripts/config2help.py to create generated/help.h.

Temporary files:

There is one temporary file in the top level source directory:

The "generated/" directory contains files generated from other source code in toybox. All of these files can be recreated by the build system, although some (such as generated/help.h) are shipped in release versions to reduce environmental dependencies (I.E. so you don't need python on your build system).

Directory toys/

toys/Config.in

Included from the top level Config.in, contains one or more configuration entries for each command.

Each command has a configuration entry matching the command name (although configuration symbols are uppercase and command names are lower case). Options to commands start with the command name followed by an underscore and the option name. Global options are attached to the "toybox" command, and thus use the prefix "TOYBOX_". This organization is used by scripts/cfg2files to select which toys/*.c files to compile for a given .config.

A command with multiple names (or multiple similar commands implemented in the same .c file) should have config symbols prefixed with the name of their C file. I.E. config symbol prefixes are NEWTOY() names. If OLDTOY() names have config symbols they're options (symbols with an underscore and suffix) to the NEWTOY() name. (See toys/toylist.h)

toys/toylist.h

The first half of this file prototypes all the structures to hold global variables for each command, and puts them in toy_union. These prototypes are only included if the macro NEWTOY isn't defined (in which case NEWTOY is defined to a default value that produces function prototypes).

The second half of this file lists all the commands in alphabetical order, along with their command line arguments and install location. Each command has an appropriate configuration guard so only the commands that are enabled wind up in the list.

The first time this header is #included, it defines structures and produces function prototypes for the commands in the toys directory.

The first time it's included, it defines structures and produces function prototypes. This is used to initialize toy_list in main.c, and later in that file to initialize NEED_OPTIONS (to figure out whether the command like parsing logic is needed), and to put the help entries in the right order in toys/help.c.

toys/help.h

#defines two help text strings for each command: a single line command_help and an additinal command_help_long. This is used by help_main() in toys/help.c to display help for commands.

Although this file is generated from Config.in help entries by scripts/config2help.py, it's shipped in release tarballs so you don't need python on the build system. (If you check code out of source control, or modify Config.in, then you'll need python installed to rebuild it.)

This file contains help for all commands, regardless of current configuration, but only the currently enabled ones are entered into help_data[] in toys/help.c.

Directory lib/

TODO: document lots more here.

lib: getmountlist(), error_msg/error_exit, xmalloc(), strlcpy(), xexec(), xopen()/xread(), xgetcwd(), xabspath(), find_in_path(), itoa().

lib/portability.h

This file is automatically included from the top of toys.h, and smooths over differences between platforms (hardware targets, compilers, C libraries, operating systems, etc).

This file provides SWAP macros (SWAP_BE16(x) and SWAP_LE32(x) and so on).

A macro like SWAP_LE32(x) means "The value in x is stored as a little endian 32 bit value, so perform the translation to/from whatever the native 32-bit format is". You do the swap once on the way in, and once on the way out. If your target is already little endian, the macro is a NOP.

The SWAP macros come in BE and LE each with 16, 32, and 64 bit versions. In each case, the name of the macro refers to the _external_ representation, and converts to/from whatever your native representation happens to be (which can vary depending on what you're currently compiling for).

lib/llist.c

Some generic single and doubly linked list functions, which take advantage of a couple properties of C:

Toybox's list structures always have their next pointer as the first entry of each struct, and singly linked lists end with a NULL pointer. This allows generic code to traverse such lists without knowing anything else about the specific structs composing them: if your pointer isn't NULL typecast it to void ** and dereference once to get the next entry.

lib/lib.h defines three structure types:

List Functions Trivia questions:

lib/args.c

Toybox's main.c automatically parses command line options before calling the command's main function. Option parsing starts in get_optflags(), which stores results in the global structures "toys" (optflags and optargs) and "this".

The option parsing infrastructure stores a bitfield in toys.optflags to indicate which options the current command line contained. Arguments attached to those options are saved into the command's global structure ("this"). Any remaining command line arguments are collected together into the null-terminated array toys.optargs, with the length in toys.optc. (Note that toys.optargs does not contain the current command name at position zero, use "toys.which->name" for that.) The raw command line arguments get_optflags() parsed are retained unmodified in toys.argv[].

Toybox's option parsing logic is controlled by an "optflags" string, using a format reminiscent of getopt's optargs but has several important differences. Toybox does not use the getopt() function out of the C library, get_optflags() is an independent implementation which doesn't permute the original arguments (and thus doesn't change how the command is displayed in ps and top), and has many features not present in libc optargs() (such as the ability to describe long options in the same string as normal options).

Each command's NEWTOY() macro has an optflags string as its middle argument, which sets toy_list.options for that command to tell get_optflags() what command line arguments to look for, and what to do with them. If a command has no option definition string (I.E. the argument is NULL), option parsing is skipped for that command, which must look at the raw data in toys.argv to parse its own arguments. (If no currently enabled command uses option parsing, get_optflags() is optimized out of the resulting binary by the compiler's --gc-sections option.)

You don't have to free the option strings, which point into the environment space (I.E. the string data is not copied). A TOYFLAG_NOFORK command that uses the linked list type "*" should free the list objects but not the data they point to, via "llist_free(TT.mylist, NULL);". (If it's not NOFORK, exit() will free all the malloced data anyway unless you want to implement a CONFIG_TOYBOX_FREE cleanup for it.)

Optflags format string

Note: the optflags option description string format is much more concisely described by a large comment at the top of lib/args.c.

The general theory is that letters set optflags, and punctuation describes other actions the option parsing logic should take.

For example, suppose the command line command -b fruit -d walrus -a 42 is parsed using the optflags string "a#b:c:d". (I.E. toys.which->options="a#b:c:d" and argv = ["command", "-b", "fruit", "-d", "walrus", "-a", "42"]). When get_optflags() returns, the following data is available to command_main():

If the command's globals are:

GLOBALS(
	char *c;
	char *b;
	long a;
)

That would mean TT.c == NULL, TT.b == "fruit", and TT.a == 42. (Remember, each entry that receives an argument must be a long or pointer, to line up with the array position. Right to left in the optflags string corresponds to top to bottom in GLOBALS().

Put globals not filled out by the option parsing logic at the end of the GLOBALS block. Common practice is to list the options one per line (to make the ordering explicit, first to last in globals corresponds to right to left in the option string), then leave a blank line before any non-option globals.

long toys.optflags

Each option in the optflags string corresponds to a bit position in toys.optflags, with the same value as a corresponding binary digit. The rightmost argument is (1<<0), the next to last is (1<<1) and so on. If the option isn't encountered while parsing argv[], its bit remains 0.

For example, the optflags string "abcd" would parse the command line argument "-c" to set optflags to 2, "-a" would set optflags to 8, "-bd" would set optflags to 6 (I.E. 4|2), and "-a -c" would set optflags to 10 (2|8).

Only letters are relevant to optflags, punctuation is skipped: in the string "a*b:c#d", d=1, c=2, b=4, a=8. The punctuation after a letter usually indicate that the option takes an argument.

Since toys.optflags is an unsigned int, it only stores 32 bits. (Which is the amount a long would have on 32-bit platforms anyway; 64 bit code on 32 bit platforms is too expensive to require in common code used by almost all commands.) Bit positions beyond the 1<<31 aren't recorded, but parsing higher options can still set global variables.

Automatically setting global variables from arguments (union this)

The following punctuation characters may be appended to an optflags argument letter, indicating the option takes an additional argument:

A note about "." and CFG_TOYBOX_FLOAT: option parsing only understands <>= after . when CFG_TOYBOX_FLOAT is enabled. (Otherwise the code to determine where floating point constants end drops out; it requires floating point). When disabled, it can reserve a global data slot for the argument (so offsets won't change in your GLOBALS[] block), but will never fill it out. You can handle this by using the USE_BLAH() macros with C string concatenation, ala: "abc." USE_TOYBOX_FLOAT("<1.23>4.56=7.89") "def"

GLOBALS

Options which have an argument fill in the corresponding slot in the global union "this" (see generated/globals.h), treating it as an array of longs with the rightmost saved in this[0]. As described above, using "a*b:c#d", "-c 42" would set this[0] = 42; and "-b 42" would set this[1] = "42"; each slot is left NULL if the corresponding argument is not encountered.

This behavior is useful because the LP64 standard ensures long and pointer are the same size. C99 guarantees structure members will occur in memory in the same order they're declared, and that padding won't be inserted between consecutive variables of register size. Thus the first few entries can be longs or pointers corresponding to the saved arguments.

See toys/other/hello.c for a longer example of parsing options into the GLOBALS block.

char *toys.optargs[]

Command line arguments in argv[] which are not consumed by option parsing (I.E. not recognized either as -flags or arguments to -flags) will be copied to toys.optargs[], with the length of that array in toys.optc. (When toys.optc is 0, no unrecognized command line arguments remain.) The order of entries is preserved, and as with argv[] this new array is also terminated by a NULL entry.

Option parsing can require a minimum or maximum number of optargs left over, by adding "<1" (read "at least one") or ">9" ("at most nine") to the start of the optflags string.

The special argument "--" terminates option parsing, storing all remaining arguments in optargs. The "--" itself is consumed.

Other optflags control characters

The following characters may occur at the start of each command's optflags string, before any options that would set a bit in toys.optflags:

The following characters may be appended to an option character, but do not by themselves indicate an extra argument should be saved in this[]. (Technically any character not recognized as a control character sets an optflag, but letters are never control characters.)

The following may be appended to a float or double:

Option parsing only understands <>= after . when CFG_TOYBOX_FLOAT is enabled. (Otherwise the code to determine where floating point constants end drops out. When disabled, it can reserve a global data slot for the argument so offsets won't change, but will never fill it out.). You can handle this by using the USE_BLAH() macros with C string concatenation, ala:

"abc." USE_TOYBOX_FLOAT("<1.23>4.56=7.89") "def"

--longopts

The optflags string can contain long options, which are enclosed in parentheses. They may be appended to an existing option character, in which case the --longopt is a synonym for that option, ala "a:(--fred)" which understands "-a blah" or "--fred blah" as synonyms.

Longopts may also appear before any other options in the optflags string, in which case they have no corresponding short argument, but instead set their own bit based on position. So for "(walrus)#(blah)xy:z" "command --walrus 42" would set toys.optflags = 16 (-z = 1, -y = 2, -x = 4, --blah = 8) and would assign this[1] = 42;

A short option may have multiple longopt synonyms, "a(one)(two)", but each "bare longopt" (ala "(one)(two)abc" before any option characters) always sets its own bit (although you can group them with +X).

[groups]

At the end of the option string, square bracket groups can define relationships between existing options. (This only applies to short options, bare --longopts can't participate.)

The first character of the group defines the type, the remaining characters are options it applies to:

So "abc[-abc]" means -ab = -b, -ba = -a, -abc = -c. "abc[+abc]" means -ab=-abc, -c=-abc, and "abc[!abc] means -ab calls error_exit("no -b with -a"). Note that [-] groups clear the GLOBALS option slot of options they're switching back off, but [+] won't set options it didn't see (just the optflags).

whitespace

Arguments may occur with or without a space (I.E. "-a 42" or "-a42"). The command line argument "-abc" may be interepreted many different ways: the optflags string "cba" sets toys.optflags = 7, "c:ba" sets toys.optflags=4 and saves "ba" as the argument to -c, and "cb:a" sets optflags to 6 and saves "c" as the argument to -b.

Note that & changes whitespace handling, so that the command line "tar cvfCj outfile.tar.bz2 topdir filename" is parsed the same as "tar filename -c -v -j -f outfile.tar.bz2 -C topdir". Note that "tar -cvfCj one two three" would equal "tar -c -v -f Cj one two three". (This matches historical usage.)

Appending a space to the option in the option string ("a: b") makes it require a space, I.E. "-ab" is interpreted as "-a" "-b". That way "kill -stop" differs from "kill -s top".

Appending ; to a longopt in the option string makes its argument optional, and only settable with =, so in ls "(color):;" can accept "ls --color" and "ls --color=auto" without complaining that the first has no argument.

lib/dirtree.c

The directory tree traversal code should be sufficiently generic that commands never need to use readdir(), scandir(), or the fts.h family of functions.

These functions do not call chdir() or rely on PATH_MAX. Instead they use openat() and friends, using one filehandle per directory level to recurseinto subdirectories. (I.E. they can descend 1000 directories deep if setrlimit(RLIMIT_NOFILE) allows enough open filehandles, and the default in /proc/self/limits is generally 1024.)

The basic dirtree functions are:

The dirtree_read() function takes two arguments, a starting path for the root of the tree, and a callback function. The callback takes a struct dirtree * (from lib/lib.h) as its argument. If the callback is NULL, the traversal uses a default callback (dirtree_notdotdot()) which recursively assembles a tree of struct dirtree nodes for all files under this directory and subdirectories (filtering out "." and ".." entries), after which dirtree_read() returns the pointer to the root node of this snapshot tree.

Otherwise the callback() is called on each entry in the directory, with struct dirtree * as its argument. This includes the initial node created by dirtree_read() at the top of the tree.

struct dirtree

Each struct dirtree node contains char name[] and struct stat st entries describing a file, plus a char *symlink which is NULL for non-symlinks.

During a callback function, the int data field of directory nodes contains a dirfd (for use with the openat() family of functions). This is generally used by calling dirtree_parentfd() on the callback's node argument. For symlinks, data contains the length of the symlink string. On the second callback from DIRTREE_COMEAGAIN (depth-first traversal) data = -1 for all nodes (that's how you can tell it's the second callback).

Users of this code may put anything they like into the long extra field. For example, "cp" and "mv" use this to store a dirfd for the destination directory (and use DIRTREE_COMEAGAIN to get the second callback so they can close(node->extra) to avoid running out of filehandles). This field is not directly used by the dirtree code, and thanks to LP64 it's large enough to store a typecast pointer to an arbitrary struct.

The return value of the callback combines flags (with boolean or) to tell the traversal infrastructure how to behave:

Each struct dirtree contains three pointers (next, parent, and child) to other struct dirtree.

The parent pointer indicates the directory containing this entry; even when not assembling a persistent tree of nodes the parent entries remain live up to the root of the tree while child nodes are active. At the top of the tree the parent pointer is NULL, meaning the node's name[] is either an absolute path or relative to cwd. The function dirtree_parentfd() gets the directory file descriptor for use with openat() and friends, returning AT_FDCWD at the top of tree.

The child pointer points to the first node of the list of contents of this directory. If the directory contains no files, or the entry isn't a directory, child is NULL.

The next pointer indicates sibling nodes in the same directory as this node, and since it's the first entry in the struct the llist.c traversal mechanisms work to iterate over sibling nodes. Each dirtree node is a single malloc() (even char *symlink points to memory at the end of the node), so llist_free() works but its callback must descend into child nodes (freeing a tree, not just a linked list), plus whatever the user stored in extra.

The dirtree_read() function is a simple wrapper, calling dirtree_add_node() to create a root node relative to the current directory, then calling handle_callback() on that node (which recurses as instructed by the callback return flags). Some commands (such as chgrp) bypass this wrapper, for example to control whether or not to follow symlinks to the root node; symlinks listed on the command line are often treated differently than symlinks encountered during recursive directory traversal).

The ls command not only bypasses the wrapper, but never returns DIRTREE_RECURSE from the callback, instead calling dirtree_recurse() manually from elsewhere in the program. This gives ls -lR manual control of traversal order, which is neither depth first nor breadth first but instead a sort of FIFO order requried by the ls standard.

Directory toys/

This directory contains command implementations. Each command is a single self-contained file. Adding a new command involves adding a single file, and removing a command involves removing that file. Commands use shared infrastructure from the lib/ and generated/ directories.

Currently there are three subdirectories under "toys/" containing commands described in POSIX-2008, the Linux Standard Base 4.1, or "other". The only difference this makes is which menu the command shows up in during "make menuconfig", the directories are otherwise identical. Note that they commands exist within a single namespace at runtime, so you can't have the same command in multiple subdirectories.

(There are actually four sub-menus in "make menuconfig", the fourth contains global configuration options for toybox, and lives in Config.in at the top level.)

See adding a new command for details on the layout of a command file.

Directory scripts/

Build infrastructure. The makefile calls scripts/make.sh for "make" and scripts/install.sh for "make install".

There's also a test suite, "make test" calls make/test.sh, which runs all the tests in make/test/*. You can run individual tests via "scripts/test.sh command", or "TEST_HOST=1 scripts/test.sh command" to run that test against the host implementation instead of the toybox one.

scripts/cfg2files.sh

Run .config through this filter to get a list of enabled commands, which is turned into a list of files in toys via a sed invocation in the top level Makefile.

Directory kconfig/

Menuconfig infrastructure copied from the Linux kernel. See the Linux kernel's Documentation/kbuild/kconfig-language.txt

Directory generated/

All the files in this directory except the README are generated by the build. (See scripts/make.sh)

Everything in this directory is a derivative file produced from something else. The entire directory is deleted by "make distclean".