aboutsummaryrefslogtreecommitdiff
path: root/lib/bunzip.c
blob: 9a0ec6d8776ec940b58c78b6409496f7fe1d86f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/* vi: set sw=4 ts=4: */
/* micro-bunzip, a small, simple bzip2 decompression implementation.

   Copyright 2003, 2006 by Rob Landley (rob@landley.net).

   Based on a close reading (but not the actual code) of the original bzip2
   decompression code by Julian R Seward (jseward@acm.org), which also
   acknowledges contributions by Mike Burrows, David Wheeler, Peter Fenwick,
   Alistair Moffat, Radford Neal, Ian H. Witten, Robert Sedgewick, and
   Jon L. Bentley.
*/

#include "toys.h"

// Constants for huffman coding
#define MAX_GROUPS			6
#define GROUP_SIZE   		50		/* 64 would have been more efficient */
#define MAX_HUFCODE_BITS 	20		/* Longest huffman code allowed */
#define MAX_SYMBOLS 		258		/* 256 literals + RUNA + RUNB */
#define SYMBOL_RUNA			0
#define SYMBOL_RUNB			1

// Other housekeeping constants
#define IOBUF_SIZE			4096

// Status return values
#define RETVAL_OK						0
#define RETVAL_LAST_BLOCK				(-1)
#define RETVAL_NOT_BZIP_DATA			(-2)
#define RETVAL_UNEXPECTED_INPUT_EOF		(-3)
#define RETVAL_UNEXPECTED_OUTPUT_EOF	(-4)
#define RETVAL_DATA_ERROR				(-5)
#define RETVAL_OUT_OF_MEMORY			(-6)
#define RETVAL_OBSOLETE_INPUT			(-7)

char *bunzip_errors[]={
	NULL,
	"Bad file checksum",
	"Not bzip data",
	"Unexpected input EOF",
	"Unexpected output EOF",
	"Data error",
	"Out of memory",
	"Obsolete (pre 0.9.5) bzip format not supported."
};

// This is what we know about each huffman coding group
struct group_data {
	int limit[MAX_HUFCODE_BITS], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
	char minLen, maxLen;
};

// Structure holding all the housekeeping data, including IO buffers and
// memory that persists between calls to bunzip
typedef struct {

	// For I/O error handling
	jmp_buf jmpbuf;

	// Input stream, input buffer, input bit buffer
	int in_fd, inbufCount, inbufPos;
	char *inbuf;
	unsigned int inbufBitCount, inbufBits;

	// Output buffer
	char outbuf[IOBUF_SIZE];
	int outbufPos;

	// The CRC values stored in the block header and calculated from the data
	unsigned int crc32Table[256], headerCRC, dataCRC, totalCRC;

	// Intermediate buffer and its size (in bytes)
	unsigned int *dbuf, dbufSize;

	// State for interrupting output loop
	int writePos, writeRun, writeCount, writeCurrent;

	// These things are a bit too big to go on the stack
	char selectors[32768];                  // nSelectors=15 bits
	struct group_data groups[MAX_GROUPS];   // huffman coding tables
} bunzip_data;

// Return the next nnn bits of input.  All reads from the compressed input
// are done through this function.  All reads are big endian.
static unsigned int get_bits(bunzip_data *bd, char bits_wanted)
{
	unsigned int bits = 0;

	// If we need to get more data from the byte buffer, do so.  (Loop getting
	// one byte at a time to enforce endianness and avoid unaligned access.)
	while (bd->inbufBitCount < bits_wanted) {

		// If we need to read more data from file into byte buffer, do so
		if (bd->inbufPos == bd->inbufCount) {
			if (0 >= (bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)))
				longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF);
			bd->inbufPos = 0;
		}

		// Avoid 32-bit overflow (dump bit buffer to top of output)
		if (bd->inbufBitCount>=24) {
			bits = bd->inbufBits&((1<<bd->inbufBitCount)-1);
			bits_wanted -= bd->inbufBitCount;
			bits <<= bits_wanted;
			bd->inbufBitCount = 0;
		}

		// Grab next 8 bits of input from buffer.
		bd->inbufBits = (bd->inbufBits<<8) | bd->inbuf[bd->inbufPos++];
		bd->inbufBitCount += 8;
	}

	// Calculate result
	bd->inbufBitCount -= bits_wanted;
	bits |= (bd->inbufBits>>bd->inbufBitCount) & ((1<<bits_wanted)-1);

	return bits;
}

// Decompress a block of text to intermediate buffer
int read_bunzip_data(bunzip_data *bd)
{
	struct group_data *hufGroup;
	int dbufCount, nextSym, dbufSize, origPtr, groupCount, *base, *limit,
		selector, i, j, k, t, runPos, symCount, symTotal, nSelectors,
		byteCount[256];
	char uc, mtfSymbol[256], symToByte[256], *selectors;
	unsigned int *dbuf;

	// Read in header signature (borrowing mtfSymbol for temp space).
	for (i=0; i<6; i++) mtfSymbol[i] = get_bits(bd,8);
	mtfSymbol[6] = 0;

	// Read CRC (which is stored big endian).
	bd->headerCRC = get_bits(bd,32);

	// Is this the last block (with CRC for file)?
	if (!strcmp(mtfSymbol, "\x17\x72\x45\x38\x50\x90"))
		return RETVAL_LAST_BLOCK;

	// If it's not a valid data block, barf.
	if (strcmp(mtfSymbol, "\x31\x41\x59\x26\x53\x59"))
		return RETVAL_NOT_BZIP_DATA;

	dbuf = bd->dbuf;
	dbufSize = bd->dbufSize;
	selectors = bd->selectors;

	// We can add support for blockRandomised if anybody complains.
	if (get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
	if ((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR;

	// mapping table: if some byte values are never used (encoding things
	// like ascii text), the compression code removes the gaps to have fewer
	// symbols to deal with, and writes a sparse bitfield indicating which
	// values were present.  We make a translation table to convert the symbols
	// back to the corresponding bytes.
	t = get_bits(bd, 16);
	symTotal = 0;
	for (i=0; i<16; i++) {
		if (t&(1<<(15-i))) {
			k = get_bits(bd,16);
			for (j=0;j<16;j++)
				if (k&(1<<(15-j))) symToByte[symTotal++] = (16*i)+j;
		}
	}

	// How many different huffman coding groups does this block use?
	groupCount = get_bits(bd,3);
	if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;

	// nSelectors: Every GROUP_SIZE many symbols we select a new huffman coding
	// group.  Read in the group selector list, which is stored as MTF encoded
	// bit runs.  (MTF = Move To Front.  Every time a symbol occurs it's moved
	// to the front of the table, so it has a shorter encoding next time.)
	if (!(nSelectors = get_bits(bd, 15))) return RETVAL_DATA_ERROR;
	for (i=0; i<groupCount; i++) mtfSymbol[i] = i;
	for (i=0; i<nSelectors; i++) {

		// Get next value
		for(j=0;get_bits(bd,1);j++)
			if (j>=groupCount) return RETVAL_DATA_ERROR;

		// Decode MTF to get the next selector, and move it to the front.
		uc = mtfSymbol[j];
		memmove(mtfSymbol+1, mtfSymbol, j);
		mtfSymbol[0] = selectors[i] = uc;
	}
	// Read the huffman coding tables for each group, which code for symTotal
	// literal symbols, plus two run symbols (RUNA, RUNB)
	symCount = symTotal+2;
	for (j=0; j<groupCount; j++) {
		unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
		int	minLen,	maxLen, pp;

		// Read lengths
		t = get_bits(bd, 5);
		for (i = 0; i < symCount; i++) {
			for(;;) {
				// !t || t > MAX_HUFCODE_BITS in one test.
				if (MAX_HUFCODE_BITS-1 < (unsigned)t-1)
					return RETVAL_DATA_ERROR;
				if(!get_bits(bd, 1)) break;    // Stop yet?
				t += (1 - 2*get_bits(bd, 1));  // bit ? t-- : t++
			}
			length[i] = t;
		}

		// Find largest and smallest lengths in this group
		minLen = maxLen = length[0];
		for (i = 1; i < symCount; i++) {
			if(length[i] > maxLen) maxLen = length[i];
			else if(length[i] < minLen) minLen = length[i];
		}

		/* Calculate permute[], base[], and limit[] tables from length[].
		 *
		 * permute[] is the lookup table for converting huffman coded symbols
		 * into decoded symbols.  base[] is the amount to subtract from the
		 * value of a huffman symbol of a given length when using permute[].
		 *
		 * limit[] indicates the largest numerical value a symbol with a given
		 * number of bits can have.  It lets us know when to stop reading.
		 *
		 * To use these, keep reading bits until value <= limit[bitcount] or
		 * you've read over 20 bits (error).  Then the decoded symbol
		 * equals permute[hufcode_value - base[hufcode_bitcount]].
		 */
		hufGroup = bd->groups+j;
		hufGroup->minLen = minLen;
		hufGroup->maxLen = maxLen;

		// Note that minLen can't be smaller than 1, so we adjust the base
		// and limit array pointers so we're not always wasting the first
		// entry.  We do this again when using them (during symbol decoding).
		base = hufGroup->base-1;
		limit = hufGroup->limit-1;

		// Calculate permute[]
		pp = 0;
		for (i = minLen; i <= maxLen; i++) 
			for (t = 0; t < symCount; t++) 
				if (length[t] == i) hufGroup->permute[pp++] = t;

		// Count cumulative symbols coded for at each bit length
		for (i = minLen; i <= maxLen; i++) temp[i] = limit[i] = 0;
		for (i = 0; i < symCount; i++) temp[length[i]]++;

		/* Calculate limit[] (the largest symbol-coding value at each bit
		 * length, which is (previous limit<<1)+symbols at this level), and
		 * base[] (number of symbols to ignore at each bit length, which is
		 * limit-cumulative count of symbols coded for already). */
		pp = t = 0;
		for (i = minLen; i < maxLen; i++) {
			pp += temp[i];
			limit[i] = pp-1;
			pp <<= 1;
			base[i+1] = pp-(t+=temp[i]);
		}
		limit[maxLen] = pp+temp[maxLen]-1;
		base[minLen] = 0;
	}

	// We've finished reading and digesting the block header.  Now read this
	// block's huffman coded symbols from the file and undo the huffman coding
	// and run length encoding, saving the result into dbuf[dbufCount++] = uc

	// Initialize symbol occurrence counters and symbol mtf table
	memset(byteCount, 0, 256*sizeof(int));
	for(i=0; i<256; i++) mtfSymbol[i] = (unsigned char)i;

	// Loop through compressed symbols.  This is the first "tight inner loop"
	// that needs to be micro-optimized for speed.  (This one fills out dbuf[]
	// linearly, staying in cache more, so isn't as limited by DRAM access.)
	runPos = dbufCount = symCount = selector = 0;
	for (;;) {

		// Determine which huffman coding group to use.
		if (!(symCount--)) {
			symCount = GROUP_SIZE-1;
			if (selector >= nSelectors) return RETVAL_DATA_ERROR;
			hufGroup = bd->groups+selectors[selector++];
			base = hufGroup->base-1;
			limit = hufGroup->limit-1;
		}

		// Read next huffman-coded symbol
		i = hufGroup->minLen;
		j = get_bits(bd, i);
		for (;;) {
			if (i > hufGroup->maxLen) return RETVAL_DATA_ERROR;
			if (j <= limit[i]) break;
			i++;

			j = (j << 1) | get_bits(bd,1);
		}

		// Huffman decode nextSym (with bounds checking)
		j-=base[i];
		if (j < 0 || j >= MAX_SYMBOLS) return RETVAL_DATA_ERROR;
		nextSym = hufGroup->permute[j];

		// If this is a repeated run, loop collecting data
		if ((unsigned)nextSym <= SYMBOL_RUNB) {

			// If this is the start of a new run, zero out counter
			if(!runPos) {
				runPos = 1;
				t = 0;
			}

			/* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
			   each bit position, add 1 or 2 instead.  For example,
			   1011 is 1<<0 + 1<<1 + 2<<2.  1010 is 2<<0 + 2<<1 + 1<<2.
			   You can make any bit pattern that way using 1 less symbol than
			   the basic or 0/1 method (except all bits 0, which would use no
			   symbols, but a run of length 0 doesn't mean anything in this
			   context).  Thus space is saved. */
			t += (runPos << nextSym); // +runPos if RUNA; +2*runPos if RUNB
			runPos <<= 1;
			continue;
		}

		/* When we hit the first non-run symbol after a run, we now know
		   how many times to repeat the last literal, so append that many
		   copies to our buffer of decoded symbols (dbuf) now.  (The last
		   literal used is the one at the head of the mtfSymbol array.) */
		if (runPos) {
			runPos = 0;
			if (dbufCount+t >= dbufSize) return RETVAL_DATA_ERROR;

			uc = symToByte[mtfSymbol[0]];
			byteCount[uc] += t;
			while (t--) dbuf[dbufCount++] = uc;
		}

		// Is this the terminating symbol?
		if (nextSym>symTotal) break;

		/* At this point, the symbol we just decoded indicates a new literal
		   character.  Subtract one to get the position in the MTF array
		   at which this literal is currently to be found.  (Note that the
		   result can't be -1 or 0, because 0 and 1 are RUNA and RUNB.
		   Another instance of the first symbol in the mtf array, position 0,
		   would have been handled as part of a run.) */
		if (dbufCount>=dbufSize) return RETVAL_DATA_ERROR;
		i = nextSym - 1;
		uc = mtfSymbol[i];
		memmove(mtfSymbol+1, mtfSymbol, i);
		mtfSymbol[0] = uc;
		uc = symToByte[uc];

		// We have our literal byte.  Save it into dbuf.
		byteCount[uc]++;
		dbuf[dbufCount++] = (unsigned int)uc;
	}

	/* At this point, we've finished reading huffman-coded symbols and
	   compressed runs from the input stream.  There are dbufCount many of
	   them in dbuf[].  Now undo the Burrows-Wheeler transform on dbuf.
	   See http://marknelson.us/1996/09/01/bwt/
	 */

	// Now we know what dbufCount is, do a better sanity check on origPtr.
	if (origPtr<0 || origPtr>=dbufCount) return RETVAL_DATA_ERROR;

	// Turn byteCount into cumulative occurrence counts of 0 to n-1.
	j = 0;
	for (i=0;i<256;i++) {
		k = j+byteCount[i];
		byteCount[i] = j;
		j = k;
	}

	// Figure out what order dbuf would be in if we sorted it.
	for (i=0; i<dbufCount; i++) {
		uc = (unsigned char)(dbuf[i] & 0xff);
		dbuf[byteCount[uc]] |= (i << 8);
		byteCount[uc]++;
	}

	// blockRandomised support would go here.

	// Using i as position, j as previous character, t as current character,
	// and uc as run count.
	bd->dataCRC = 0xffffffffL;

	/* Decode first byte by hand to initialize "previous" byte.  Note that it
	   doesn't get output, and if the first three characters are identical
	   it doesn't qualify as a run (hence uc=255, which will either wrap
	   to 1 or get reset). */
	if (dbufCount) {
		bd->writePos = dbuf[origPtr];
	    bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
		bd->writePos >>= 8;
		bd->writeRun = -1;
	}
	bd->writeCount = dbufCount;

	return RETVAL_OK;
}

// Flush output buffer to disk
void flush_bunzip_outbuf(bunzip_data *bd, int out_fd)
{
	if (bd->outbufPos) {
		if (write(out_fd, bd->outbuf, bd->outbufPos) != bd->outbufPos)
			longjmp(bd->jmpbuf,RETVAL_UNEXPECTED_OUTPUT_EOF);
		bd->outbufPos = 0;
	}
}

// Undo burrows-wheeler transform on intermediate buffer to produce output.
// If !len, write up to len bytes of data to buf.  Otherwise write to out_fd.
// Returns len ? bytes written : RETVAL_OK.  Notice all errors negative #'s.
int write_bunzip_data(bunzip_data *bd, int out_fd, char *outbuf, int len)
{
	unsigned int *dbuf = bd->dbuf;
	int count, pos, current, run, copies, outbyte, previous, gotcount = 0;

	for (;;) {

		// If last read was short due to end of file, return last block now
		if (bd->writeCount < 0) return bd->writeCount;

		// If we need to refill dbuf, do it.
		if (!bd->writeCount) {
			int i = read_bunzip_data(bd);
			if (i) {
				if (i == RETVAL_LAST_BLOCK) {
					bd->writeCount = i;
					return gotcount;
				} else return i;
			}
		}

		// Loop generating output
		count = bd->writeCount;
		pos = bd->writePos;
		current = bd->writeCurrent;
		run = bd->writeRun;
		while (count) {

			// If somebody (like tar) wants a certain number of bytes of
			// data from memory instead of written to a file, humor them.
			if (len && bd->outbufPos>=len) goto dataus_interruptus;
			count--;

			// Follow sequence vector to undo Burrows-Wheeler transform.
			previous = current;
			pos = dbuf[pos];
			current = pos&0xff;
			pos >>= 8;

			// Whenever we see 3 consecutive copies of the same byte,
			// the 4th is a repeat count
			if (run++ == 3) {
				copies = current;
				outbyte = previous;
				current = -1;
			} else {
				copies = 1;
				outbyte = current;
			}

			// Output bytes to buffer, flushing to file if necessary
			while (copies--) {
				if (bd->outbufPos == IOBUF_SIZE) flush_bunzip_outbuf(bd,out_fd);
				bd->outbuf[bd->outbufPos++] = outbyte;
				bd->dataCRC = (bd->dataCRC << 8)
								^ bd->crc32Table[(bd->dataCRC >> 24) ^ outbyte];
			}
			if (current!=previous) run=0;
		}

		// Decompression of this block completed successfully
		bd->dataCRC = ~(bd->dataCRC);
		bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31))
			^ bd->dataCRC;

		// If this block had a CRC error, force file level CRC error.
		if (bd->dataCRC != bd->headerCRC) {
			bd->totalCRC = bd->headerCRC+1;

			return RETVAL_LAST_BLOCK;
		}
dataus_interruptus:
		bd->writeCount = count;
		if (len) {
			gotcount += bd->outbufPos;
			memcpy(outbuf, bd->outbuf, len);

			// If we got enough data, checkpoint loop state and return
			if ((len-=bd->outbufPos)<1) {
				bd->outbufPos -= len;
				if (bd->outbufPos)
					memmove(bd->outbuf, bd->outbuf+len, bd->outbufPos);
				bd->writePos = pos;
				bd->writeCurrent = current;
				bd->writeRun = run;

				return gotcount;
			}
		}
	}
}

// Allocate the structure, read file header.  If !len, src_fd contains
// filehandle to read from.  Else inbuf contains data.
int start_bunzip(bunzip_data **bdp, int src_fd, char *inbuf, int len)
{
	bunzip_data *bd;
	unsigned int i, j, c;

	// Figure out how much data to allocate.
	i = sizeof(bunzip_data);
	if (!len) i += IOBUF_SIZE;

	// Allocate bunzip_data.  Most fields initialize to zero.
	if (!(bd = *bdp = malloc(i))) return RETVAL_OUT_OF_MEMORY;
	memset(bd,0,sizeof(bunzip_data));
	if (len) {
		bd->inbuf = inbuf;
		bd->inbufCount = len;
		bd->in_fd = -1;
	} else {
		bd->inbuf = (char *)(bd+1);
		bd->in_fd = src_fd;
	}

	// Init the CRC32 table (big endian)
	for (i=0; i<256; i++) {
		c = i<<24;
		for (j=8; j; j--)
			c=c&0x80000000 ? (c<<1)^0x04c11db7 : (c<<1);
		bd->crc32Table[i] = c;
	}

	// Setup for I/O error handling via longjmp.
	i = setjmp(bd->jmpbuf);
	if (i) return i;

	// Ensure that file starts with "BZh".
    for (i=0;i<3;i++)
		if (get_bits(bd,8)!="BZh"[i]) return RETVAL_NOT_BZIP_DATA;

	// Next byte ascii '1'-'9', indicates block size in units of 100k of
	// uncompressed data.  Allocate intermediate buffer for block.
	i = get_bits(bd, 8);
	if (i<'1' || i>'9') return RETVAL_NOT_BZIP_DATA;
	bd->dbufSize = 100000*(i-'0');
	if (!(bd->dbuf = malloc(bd->dbufSize * sizeof(int))))
		return RETVAL_OUT_OF_MEMORY;

	return RETVAL_OK;
}

// Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip data,
// not end of file.)
char *bunzipStream(int src_fd, int dst_fd)
{
	bunzip_data *bd;
	int i;

	if (!(i = start_bunzip(&bd,src_fd,0,0))) {
		i = write_bunzip_data(bd,dst_fd,0,0);
		if (i==RETVAL_LAST_BLOCK && bd->headerCRC==bd->totalCRC) i = RETVAL_OK;
	}
	flush_bunzip_outbuf(bd,dst_fd);
	free(bd->dbuf);
	free(bd);
	return bunzip_errors[-i];
}