1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
/* vi: set ts=4:
*
* mke2fs.c - Create an ext2 filesystem image.
*
* Copyright 2006 Rob Landley <rob@landley.net>
*/
#include "toys.h"
#define TT toy.mke2fs
// b - block size (1024, 2048, 4096)
// F - force (run on mounted device or non-block device)
// i - bytes per inode
// N - number of inodes
// m - reserved blocks percentage
// n - Don't write
// q - quiet
// L - volume label
// M - last mounted path
// o - creator os
// j - create journal
// J - journal options (size=1024-102400 blocks,device=)
// device=/dev/blah or LABEL=label UUID=uuid
// E - extended options (stride=stripe-size blocks)
// O - none,dir_index,filetype,has_journal,journal_dev,sparse_super
// According to http://www.opengroup.org/onlinepubs/9629399/apdxa.htm
// we should generate a uuid structure by reading a clock with 100 nanosecond
// precision, normalizing it to the start of the gregorian calendar in 1582,
// and looking up our eth0 mac address.
//
// On the other hand, we have 128 bits to come up with a unique identifier, of
// which 6 have a defined value. /dev/urandom it is.
void create_uuid(char *uuid)
{
// Read 128 random bytes
int fd = xopen("/dev/urandom", O_RDONLY);
xreadall(fd, uuid, 16);
close(fd);
// Claim to be a DCE format UUID.
uuid[6] = (uuid[6] & 0x0F) | 0x40;
uuid[8] = (uuid[8] & 0x3F) | 0x80;
// rfc2518 section 6.4.1 suggests if we're not using a macaddr, we should
// set bit 1 of the node ID, which is the mac multicast bit. This means we
// should never collide with anybody actually using a macaddr.
uuid[11] = uuid[11] | 128;
}
int mke2fs_main(void)
{
struct ext2_superblock *sb = xzalloc(sizeof(struct ext2_superblock));
uint32_t temp;
off_t length;
// Handle command line arguments.
if (toys.optargs[1]) {
sscanf(toys.optargs[1], "%u", &TT.blocks);
temp = O_RDWR|O_CREAT;
} else temp = O_RDWR;
// TODO: Check if filesystem is mounted here
// For mke?fs, open file. For gene?fs, create file.
length = fdlength(TT.fsfd = xcreate(*toys.optargs, temp, 0777));
// TODO: collect gene2fs list, calculate requirements.
// Fill out superblock structure
// Determine appropriate block size, set log_block_size and log_frag_size.
if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096;
if (TT.blocksize == 1024) temp = 0;
else if (TT.blocksize == 2048) temp = 1;
else if (TT.blocksize == 4096) temp = 2;
else error_exit("bad blocksize");
sb->log_block_size = sb->log_frag_size = SWAP_LE32(temp);
// Fill out blocks_count and r_blocks_count
if (!TT.blocks) TT.blocks = length/TT.blocksize;
sb->blocks_count = SWAP_LE32(TT.blocks);
if (!TT.reserved_percent) TT.reserved_percent = 5;
temp = (TT.blocks * (uint64_t)TT.reserved_percent) /100;
sb->r_blocks_count = SWAP_LE32(temp);
// Set blocks_per_group and frags_per_group, which is the size of an
// allocation bitmap that fits in one block (I.E. how many bits per block)?
temp = TT.blocksize*8;
sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(temp);
// How many block groups do we need? (Round up avoiding integer overflow.)
TT.groups = (TT.blocks)/temp;
if (TT.blocks & (temp-1)) TT.groups++;
// Figure out how many inodes we need.
if (!TT.inodes) {
if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192;
TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode;
}
// Figure out inodes per group, rounded up to block size.
// How many blocks of inodes total, rounded up
temp = TT.inodes / (TT.blocksize/sizeof(struct ext2_inode));
if (TT.inodes & (TT.blocksize-1)) temp++;
// How many blocks of inodes per group, again rounded up
TT.inodes = temp / TT.groups;
if (temp & (TT.groups-1)) TT.inodes++;
// How many inodes per group is that?
TT.inodes *= (TT.blocksize/sizeof(struct ext2_inode));
// Set inodes_per_group and total inodes_count
sb->inodes_per_group = SWAP_LE32(TT.inodes);
sb->inodes_count = SWAP_LE32(TT.inodes *= TT.groups);
// Fill out the rest of the superblock.
sb->max_mnt_count=0xFFFF;
sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL));
sb->magic = SWAP_LE32(0xEF53);
sb->state = sb->errors = SWAP_LE16(1);
sb->rev_level = SWAP_LE32(1);
sb->inode_size = sizeof(struct ext2_inode);
sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE);
sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER);
create_uuid(sb->uuid);
// If we're called as mke3fs or mkfs.ext3, do a journal.
//if (strchr(toys.which->name,'3'))
// sb->feature_compat |= EXT3_FEATURE_COMPAT_HAS_JOURNAL;
// We skip the first 1k (to avoid the boot sector, if any). Use this to
// figure out if this file is seekable.
if(-1 == lseek(TT.fsfd, 1024, SEEK_SET)) perror_exit("lseek");
//{ TT.noseek=1; xwrite(TT.fsfd, sb, 1024); }
// Write superblock to disk.
xwrite(TT.fsfd, sb, sizeof(struct ext2_superblock)); // 4096-1024
return 0;
}
|