1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
/* vi: set ts=4:
*
* mke2fs.c - Create an ext2 filesystem image.
*
* Copyright 2006 Rob Landley <rob@landley.net>
*/
#include "toys.h"
#define TT toy.mke2fs
// b - block size (1024, 2048, 4096)
// F - force (run on mounted device or non-block device)
// i - bytes per inode
// N - number of inodes
// m - reserved blocks percentage
// n - Don't write
// q - quiet
// L - volume label
// M - last mounted path
// o - creator os
// j - create journal
// J - journal options (size=1024-102400 blocks,device=)
// device=/dev/blah or LABEL=label UUID=uuid
// E - extended options (stride=stripe-size blocks)
// O - none,dir_index,filetype,has_journal,journal_dev,sparse_super
#define INODES_RESERVED 10
// According to http://www.opengroup.org/onlinepubs/9629399/apdxa.htm
// we should generate a uuid structure by reading a clock with 100 nanosecond
// precision, normalizing it to the start of the gregorian calendar in 1582,
// and looking up our eth0 mac address.
//
// On the other hand, we have 128 bits to come up with a unique identifier, of
// which 6 have a defined value. /dev/urandom it is.
static void create_uuid(char *uuid)
{
// Read 128 random bytes
int fd = xopen("/dev/urandom", O_RDONLY);
xreadall(fd, uuid, 16);
close(fd);
// Claim to be a DCE format UUID.
uuid[6] = (uuid[6] & 0x0F) | 0x40;
uuid[8] = (uuid[8] & 0x3F) | 0x80;
// rfc2518 section 6.4.1 suggests if we're not using a macaddr, we should
// set bit 1 of the node ID, which is the mac multicast bit. This means we
// should never collide with anybody actually using a macaddr.
uuid[11] = uuid[11] | 128;
}
// Fill out superblock and TT
static void init_superblock(struct ext2_superblock *sb)
{
uint32_t temp;
// Set log_block_size and log_frag_size.
for (temp = 0; temp < 4; temp++) if (TT.blocksize == 1024<<temp) break;
if (temp==4) error_exit("bad blocksize");
sb->log_block_size = sb->log_frag_size = SWAP_LE32(temp);
// Fill out blocks_count, r_blocks_count, first_data_block
sb->blocks_count = SWAP_LE32(TT.blocks);
if (!TT.reserved_percent) TT.reserved_percent = 5;
temp = (TT.blocks * (uint64_t)TT.reserved_percent) /100;
sb->r_blocks_count = SWAP_LE32(temp);
sb->first_data_block = SWAP_LE32(TT.blocksize == 1024 ? 1 : 0);
// Set blocks_per_group and frags_per_group, which is the size of an
// allocation bitmap that fits in one block (I.E. how many bits per block)?
temp = TT.blocksize*8;
sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(temp);
// How many block groups do we need? (Round up avoiding integer overflow.)
TT.groups = (TT.blocks)/temp;
if (TT.blocks & (temp-1)) TT.groups++;
// Figure out how many inodes we need.
if (!TT.inodes) {
if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192;
TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode;
}
// Figure out inodes per group, rounded up to block size.
// How many blocks of inodes total, rounded up
temp = TT.inodes / (TT.blocksize/sizeof(struct ext2_inode));
if (temp * (TT.blocksize/sizeof(struct ext2_inode)) != TT.inodes) temp++;
// How many blocks of inodes per group, again rounded up
TT.inodes = temp / TT.groups;
if (temp & (TT.groups-1)) TT.inodes++;
// How many inodes per group is that?
TT.inodes *= (TT.blocksize/sizeof(struct ext2_inode));
// Set inodes_per_group and total inodes_count
sb->inodes_per_group = SWAP_LE32(TT.inodes);
sb->inodes_count = SWAP_LE32(TT.inodes *= TT.groups);
// Fill out the rest of the superblock.
sb->max_mnt_count=0xFFFF;
sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL));
sb->magic = SWAP_LE32(0xEF53);
sb->state = sb->errors = SWAP_LE16(1);
sb->rev_level = SWAP_LE32(1);
sb->first_ino = SWAP_LE32(INODES_RESERVED+1);
sb->inode_size = SWAP_LE16(sizeof(struct ext2_inode));
sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE);
sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER);
create_uuid(sb->uuid);
// TODO If we're called as mke3fs or mkfs.ext3, do a journal.
//if (strchr(toys.which->name,'3'))
// sb->feature_compat = SWAP_LE32(EXT3_FEATURE_COMPAT_HAS_JOURNAL);
// TODO fill out free_blocks, free_inodes, first_ino
}
// Number of blocks used in this group by superblock/group list backup.
// Returns 0 if this group doesn't have a superblock backup.
static int group_superblock_used(uint32_t group)
{
int used = 0, i;
// Superblock backups are on groups 0, 1, and powers of 3, 5, and 7.
if(!group || group==1) used++;
for (i=3; i<9; i+=2) {
int j = i;
while (j<group) j*=i;
if (j==group) used++;
}
if (used) {
// How blocks does the group table take up?
used = TT.groups * sizeof(struct ext2_group);
used += TT.blocksize - 1;
used /= TT.blocksize;
// Plus the superblock itself.
used++;
// And a corner case.
if (!group && TT.blocksize == 1024) used++;
}
return used;
}
static void bits_set(char *array, int start, int len)
{
while(len) {
if ((start&7) || len<8) {
array[start/8]|=(1<<(start&7));
start++;
len--;
} else {
array[start/8]=255;
start+=8;
len-=8;
}
}
}
int mke2fs_main(void)
{
int i, temp, blockbits;
off_t length;
// Handle command line arguments.
if (toys.optargs[1]) {
sscanf(toys.optargs[1], "%u", &TT.blocks);
temp = O_RDWR|O_CREAT;
} else temp = O_RDWR;
// TODO: collect gene2fs list/lost+found, calculate requirements.
// TODO: Check if filesystem is mounted here
// For mke?fs, open file. For gene?fs, create file.
TT.fsfd = xcreate(*toys.optargs, temp, 0777);
// Determine appropriate block size and block count from file length.
length = fdlength(TT.fsfd);
if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096;
if (!TT.blocks) TT.blocks = length/TT.blocksize;
if (!TT.blocks) error_exit("gene2fs is a TODO item");
// Skip the first 1k to avoid the boot sector (if any). Use this to
// figure out if this file is seekable.
if(-1 == lseek(TT.fsfd, 1024, SEEK_SET)) {
TT.noseek=1;
xwrite(TT.fsfd, &TT.sb, 1024);
}
// Initialize superblock structure
init_superblock(&TT.sb);
blockbits = 8*TT.blocksize;
// Loop through block groups.
for (i=0; i<TT.groups; i++) {
struct ext2_inode *in = (struct ext2_inode *)toybuf;
uint32_t start, itable, used, end;
int j, slot;
// Where does this group end?
end = blockbits;
if ((i+1)*blockbits > TT.blocks) end = TT.blocks & (blockbits-1);
// Blocks used by inode table
itable = ((TT.inodes/TT.groups)*sizeof(struct ext2_inode))/TT.blocksize;
// If a superblock goes here, write it out.
start = group_superblock_used(i);
if (start) {
struct ext2_group *bg = (struct ext2_group *)toybuf;
TT.sb.block_group_nr = SWAP_LE16(i);
// Write superblock and pad it up to block size
xwrite(TT.fsfd, &TT.sb, sizeof(struct ext2_superblock));
temp = TT.blocksize - sizeof(struct ext2_superblock);
if (!i && TT.blocksize > 1024) temp -= 1024;
memset(toybuf, 0, TT.blocksize);
xwrite(TT.fsfd, toybuf, temp);
// Loop through groups to write group descriptor table.
for(j=0; j<TT.groups; j++) {
// Figure out what sector this group starts in.
used = group_superblock_used(j);
// Find next array slot in this block (flush block if full).
slot = j % (TT.blocksize/sizeof(struct ext2_group));
if (!slot) {
if (j) xwrite(TT.fsfd, bg, TT.blocksize);
memset(bg, 0, TT.blocksize);
}
// sb.inodes_per_group is uint32_t, but group.free_inodes_count
// is uint16_t. Add in endianness conversion and this little
// dance is called for.
temp = SWAP_LE32(TT.sb.inodes_per_group);
if (!i) temp -= INODES_RESERVED;
bg[slot].free_inodes_count = SWAP_LE16(temp);
// How many blocks will the inode table use?
temp *= sizeof(struct ext2_inode);
temp /= TT.blocksize;
// How many does that leave? (TODO: fill it up)
temp = end-used-temp;
bg[slot].free_blocks_count = SWAP_LE32(temp);
// Fill out rest of group structure (TODO: gene2fs allocation)
used += j*blockbits;
bg[slot].block_bitmap = SWAP_LE32(used++);
bg[slot].inode_bitmap = SWAP_LE32(used++);
bg[slot].inode_table = SWAP_LE32(used);
bg[slot].used_dirs_count = 0; // (TODO)
}
xwrite(TT.fsfd, bg, TT.blocksize);
}
// Now write out stuff that every block group has.
// Write block usage bitmap (TODO: fill it)
memset(toybuf, 0, TT.blocksize);
bits_set(toybuf, 0, start+itable);
if (end!=blockbits) bits_set(toybuf, end, blockbits-end);
xwrite(TT.fsfd, toybuf, TT.blocksize);
// Write inode bitmap (TODO)
temp = TT.inodes/TT.groups;
memset(toybuf, 0, TT.blocksize);
if (!i) bits_set(toybuf, 0, INODES_RESERVED);
bits_set(toybuf, temp, blockbits-temp);
xwrite(TT.fsfd, toybuf, TT.blocksize);
// Write inode table for this group
for (j = 0; j<temp; j++) {
slot = j % (TT.blocksize/sizeof(struct ext2_inode));
if (!slot) {
if (j) xwrite(TT.fsfd, in, TT.blocksize);
memset(in, 0, TT.blocksize);
}
}
xwrite(TT.fsfd, in, TT.blocksize);
// Write empty data blocks
memset(toybuf, 0, TT.blocksize);
for (j = start; j < end; j++)
xwrite(TT.fsfd, toybuf, TT.blocksize);
}
return 0;
}
|