aboutsummaryrefslogtreecommitdiff
path: root/toys/other/sha1sum.c
blob: 3229cd125fbbb1b6bb73b1b4ec68526b03f9f164 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* vi: set sw=4 ts=4:
 *
 * sha1sum.c - Calculate sha1 cryptographic hash for input.
 *
 * Copyright 2007 Rob Landley <rob@landley.net>
 *
 * Based on the public domain SHA-1 in C by Steve Reid <steve@edmweb.com>
 * from http://www.mirrors.wiretapped.net/security/cryptography/hashes/sha1/
 *
 * Not in SUSv3.

USE_SHA1SUM(NEWTOY(sha1sum, NULL, TOYFLAG_USR|TOYFLAG_BIN))

config SHA1SUM
	bool "sha1sum"
	default y
	help
	  usage: sha1sum [file...]

	  Calculate sha1 hash of files (or stdin).
*/

#include <toys.h>

struct sha1 {
	uint32_t state[5];
	uint32_t oldstate[5];
	uint64_t count;
	union {
		unsigned char c[64];
		uint32_t i[16];
	} buffer;
};

static void sha1_init(struct sha1 *this);
static void sha1_transform(struct sha1 *this);
static void sha1_update(struct sha1 *this, char *data, unsigned int len);
static void sha1_final(struct sha1 *this, char digest[20]);

#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

// blk0() and blk() perform the initial expand.
// The idea of expanding during the round function comes from SSLeay
#if 1
#define blk0(i) (block[i] = (rol(block[i],24)&0xFF00FF00) \
	|(rol(block[i],8)&0x00FF00FF))
#else	// big endian?
#define blk0(i) block[i]
#endif
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
	^block[(i+2)&15]^block[i&15],1))

static const uint32_t rconsts[]={0x5A827999,0x6ED9EBA1,0x8F1BBCDC,0xCA62C1D6};

// Hash a single 512-bit block. This is the core of the algorithm.

static void sha1_transform(struct sha1 *this)
{
	int i, j, k, count;
	uint32_t *block = this->buffer.i;
	uint32_t *rot[5], *temp;

	// Copy context->state[] to working vars
	for (i=0; i<5; i++) {
		this->oldstate[i] = this->state[i];
		rot[i] = this->state + i;
	}
	// 4 rounds of 20 operations each.
	for (i=count=0; i<4; i++) {
		for (j=0; j<20; j++) {
			uint32_t work;

			work = *rot[2] ^ *rot[3];
			if (!i) work = (work & *rot[1]) ^ *rot[3];
			else {
				if (i==2)
					work = ((*rot[1]|*rot[2])&*rot[3])|(*rot[1]&*rot[2]);
				else work ^= *rot[1];
			}
			if (!i && j<16) work += blk0(count);
			else work += blk(count);
			*rot[4] += work + rol(*rot[0],5) + rconsts[i];
			*rot[1] = rol(*rot[1],30);

			// Rotate by one for next time.
			temp = rot[4];
			for (k=4; k; k--) rot[k] = rot[k-1];
			*rot = temp;
			count++;
		}
	}
	// Add the previous values of state[]
	for (i=0; i<5; i++) this->state[i] += this->oldstate[i];
}


// Initialize a struct sha1.

static void sha1_init(struct sha1 *this)
{
	/* SHA1 initialization constants */
	this->state[0] = 0x67452301;
	this->state[1] = 0xEFCDAB89;
	this->state[2] = 0x98BADCFE;
	this->state[3] = 0x10325476;
	this->state[4] = 0xC3D2E1F0;
	this->count = 0;
}

// Fill the 64-byte working buffer and call sha1_transform() when full.

void sha1_update(struct sha1 *this, char *data, unsigned int len)
{
	unsigned int i, j;

	j = this->count & 63;
	this->count += len;

	// Enough data to process a frame?
	if ((j + len) > 63) {
		i = 64-j;
		memcpy(this->buffer.c + j, data, i);
		sha1_transform(this);
		for ( ; i + 63 < len; i += 64) {
			memcpy(this->buffer.c, data + i, 64);
			sha1_transform(this);
		}
		j = 0;
	} else i = 0;
	// Grab remaining chunk
	memcpy(this->buffer.c + j, data + i, len - i);
}

// Add padding and return the message digest.

void sha1_final(struct sha1 *this, char digest[20])
{
	uint64_t count = this->count << 3;
	unsigned int i;
	char buf;

	// End the message by appending a "1" bit to the data, ending with the
	// message size (in bits, big endian), and adding enough zero bits in
	// between to pad to the end of the next 64-byte frame.
	//
	// Since our input up to now has been in whole bytes, we can deal with
	// bytes here too.

	buf = 0x80;
	do {
		sha1_update(this, &buf, 1);
		buf = 0;
	} while ((this->count & 63) != 56);
	for (i = 0; i < 8; i++)
	  this->buffer.c[56+i] = count >> (8*(7-i));
	sha1_transform(this);

	for (i = 0; i < 20; i++)
		digest[i] = this->state[i>>2] >> ((3-(i & 3)) * 8);
	// Wipe variables.  Cryptogropher paranoia.
	memset(this, 0, sizeof(struct sha1));
}

// Callback for loopfiles()

static void do_sha1(int fd, char *name)
{
	struct sha1 this;
	int len;

	sha1_init(&this);
	for (;;) {
		len = read(fd, toybuf, sizeof(toybuf));
		if (len<1) break;
		sha1_update(&this, toybuf, len);
	}
	sha1_final(&this, toybuf);
	for (len = 0; len < 20; len++) printf("%02x", toybuf[len]);
	printf("  %s\n", name);
}

void sha1sum_main(void)
{
	loopfiles(toys.optargs, do_sha1);
}