1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
|
/* compress.c - deflate/inflate code for zip, gzip, zlib, and raw
*
* Copyright 2014 Rob Landley <rob@landley.net>
*
* The inflate/deflate code lives here, so the various things that use it
* either live here or call these commands to pipe data through them.
*
* Divergence from posix: replace obsolete/patented "compress" with mutiplexer.
* (gzip already replaces "uncompress".)
*
* See RFCs 1950 (zlib), 1951 (deflate), and 1952 (gzip)
* LSB 4.1 has gzip, gunzip, and zcat
* TODO: zip -d DIR -x LIST -list -quiet -no overwrite -overwrite -p to stdout
// Accept many different kinds of command line argument.
// Leave Lrg at end so flag values line up.
USE_COMPRESS(NEWTOY(compress, "zcd9lrg[-cd][!zgLr]", TOYFLAG_USR|TOYFLAG_BIN))
//zip unzip gzip gunzip zcat
config COMPRESS
bool "compress"
default n
help
usage: compress [-zgLR19] [FILE]
Compress or decompress file (or stdin) using "deflate" algorithm.
-1 min compression
-9 max compression (default)
-g gzip (default)
-L zlib
-R raw
-z zip
config DECOMPRESS
bool "decompress"
default n
help
usage: compress [-zglrcd9] [FILE]
Compress or decompress file (or stdin) using "deflate" algorithm.
-c compress with -g gzip (default) -l zlib -r raw -z zip
-d decompress (autodetects type)
*/
#define FOR_compress
#include "toys.h"
GLOBALS(
// Huffman codes: base offset and extra bits tables (length and distance)
char lenbits[29], distbits[30];
unsigned short lenbase[29], distbase[30];
void *fixdisthuff, *fixlithuff;
// CRC
void (*crcfunc)(char *data, int len);
unsigned crc;
// Compressed data buffer
char *data;
unsigned pos, len;
int infd, outfd;
// Tables only used for deflation
unsigned short *hashhead, *hashchain;
)
// little endian bit buffer
struct bitbuf {
int fd, bitpos, len, max;
char buf[];
};
// malloc a struct bitbuf
struct bitbuf *bitbuf_init(int fd, int size)
{
struct bitbuf *bb = xzalloc(sizeof(struct bitbuf)+size);
bb->max = size;
bb->fd = fd;
return bb;
}
// Advance bitpos without the overhead of recording bits
void bitbuf_skip(struct bitbuf *bb, int bits)
{
int pos = bb->bitpos + bits, len = bb->len << 3;
while (pos >= len) {
pos -= len;
len = (bb->len = read(bb->fd, bb->buf, bb->max)) << 3;
if (bb->len < 1) perror_exit("inflate EOF");
}
bb->bitpos = pos;
}
// Optimized single bit inlined version
static inline int bitbuf_bit(struct bitbuf *bb)
{
int bufpos = bb->bitpos>>3;
if (bufpos == bb->len) {
bitbuf_skip(bb, 0);
bufpos = 0;
}
return (bb->buf[bufpos]>>(bb->bitpos++&7))&1;
}
// Fetch the next X bits from the bitbuf, little endian
unsigned bitbuf_get(struct bitbuf *bb, int bits)
{
int result = 0, offset = 0;
while (bits) {
int click = bb->bitpos >> 3, blow, blen;
// Load more data if buffer empty
if (click == bb->len) bitbuf_skip(bb, click = 0);
// grab bits from next byte
blow = bb->bitpos & 7;
blen = 8-blow;
if (blen > bits) blen = bits;
result |= ((bb->buf[click] >> blow) & ((1<<blen)-1)) << offset;
offset += blen;
bits -= blen;
bb->bitpos += blen;
}
return result;
}
void bitbuf_flush(struct bitbuf *bb)
{
if (!bb->bitpos) return;
xwrite(bb->fd, bb->buf, (bb->bitpos+7)/8);
memset(bb->buf, 0, bb->max);
bb->bitpos = 0;
}
void bitbuf_put(struct bitbuf *bb, int data, int len)
{
while (len) {
int click = bb->bitpos >> 3, blow, blen;
// Flush buffer if necessary
if (click == bb->max) {
bitbuf_flush(bb);
click = 0;
}
blow = bb->bitpos & 7;
blen = 8-blow;
if (blen > len) blen = len;
bb->buf[click] |= data << blow;
bb->bitpos += blen;
data >>= blen;
len -= blen;
}
}
static void output_byte(char sym)
{
int pos = TT.pos++ & 32767;
TT.data[pos] = sym;
if (!pos) {
xwrite(TT.outfd, TT.data, 32768);
if (TT.crcfunc) TT.crcfunc(TT.data, 32768);
}
}
// Huffman coding uses bits to traverse a binary tree to a leaf node,
// By placing frequently occurring symbols at shorter paths, frequently
// used symbols may be represented in fewer bits than uncommon symbols.
struct huff {
unsigned short length[16];
unsigned short symbol[288];
};
// Create simple huffman tree from array of bit lengths.
// The symbols in the huffman trees are sorted (first by bit length
// of the code to reach them, then by symbol number). This means that given
// the bit length of each symbol, we can construct a unique tree.
static void len2huff(struct huff *huff, char bitlen[], int len)
{
int offset[16];
int i;
// Count number of codes at each bit length
memset(huff, 0, sizeof(struct huff));
for (i = 0; i<len; i++) huff->length[bitlen[i]]++;
// Sort symbols by bit length. (They'll remain sorted by symbol within that.)
*huff->length = *offset = 0;
for (i = 1; i<16; i++) offset[i] = offset[i-1] + huff->length[i-1];
for (i = 0; i<len; i++) if (bitlen[i]) huff->symbol[offset[bitlen[i]]++] = i;
}
// Fetch and decode next huffman coded symbol from bitbuf.
// This takes advantage of the sorting to navigate the tree as an array:
// each time we fetch a bit we have all the codes at that bit level in
// order with no gaps.
static unsigned huff_and_puff(struct bitbuf *bb, struct huff *huff)
{
unsigned short *length = huff->length;
int start = 0, offset = 0;
// Traverse through the bit lengths until our code is in this range
for (;;) {
offset = (offset << 1) | bitbuf_bit(bb);
start += *++length;
if ((offset -= *length) < 0) break;
if ((length - huff->length) & 16) error_exit("bad symbol");
}
return huff->symbol[start + offset];
}
// Decompress deflated data from bitbuf to TT.outfd.
static void inflate(struct bitbuf *bb)
{
TT.crc = ~0;
// repeat until spanked
for (;;) {
int final, type;
final = bitbuf_get(bb, 1);
type = bitbuf_get(bb, 2);
if (type == 3) error_exit("bad type");
// Uncompressed block?
if (!type) {
int len, nlen;
// Align to byte, read length
bitbuf_skip(bb, (8-bb->bitpos)&7);
len = bitbuf_get(bb, 16);
nlen = bitbuf_get(bb, 16);
if (len != (0xffff & ~nlen)) error_exit("bad len");
// Dump literal output data
while (len) {
int pos = bb->bitpos >> 3, bblen = bb->len - pos;
char *p = bb->buf+pos;
// dump bytes until done or end of current bitbuf contents
if (bblen > len) bblen = len;
pos = bblen;
while (pos--) output_byte(*(p++));
bitbuf_skip(bb, bblen << 3);
len -= bblen;
}
// Compressed block
} else {
struct huff *disthuff, *lithuff;
// Dynamic huffman codes?
if (type == 2) {
struct huff *h2 = ((struct huff *)toybuf)+1;
int i, litlen, distlen, hufflen;
char *hufflen_order = "\x10\x11\x12\0\x08\x07\x09\x06\x0a\x05\x0b"
"\x04\x0c\x03\x0d\x02\x0e\x01\x0f", *bits;
// The huffman trees are stored as a series of bit lengths
litlen = bitbuf_get(bb, 5)+257; // max 288
distlen = bitbuf_get(bb, 5)+1; // max 32
hufflen = bitbuf_get(bb, 4)+4; // max 19
// The literal and distance codes are themselves compressed, in
// a complicated way: an array of bit lengths (hufflen many
// entries, each 3 bits) is used to fill out an array of 19 entries
// in a magic order, leaving the rest 0. Then make a tree out of it:
memset(bits = toybuf+1, 0, 19);
for (i=0; i<hufflen; i++) bits[hufflen_order[i]] = bitbuf_get(bb, 3);
len2huff(h2, bits, 19);
// Use that tree to read in the literal and distance bit lengths
for (i = 0; i < litlen + distlen;) {
int sym = huff_and_puff(bb, h2);
// 0-15 are literals, 16 = repeat previous code 3-6 times,
// 17 = 3-10 zeroes (3 bit), 18 = 11-138 zeroes (7 bit)
if (sym < 16) bits[i++] = sym;
else {
int len = sym & 2;
len = bitbuf_get(bb, sym-14+len+(len>>1)) + 3 + (len<<2);
memset(bits+i, bits[i-1] * !(sym&3), len);
i += len;
}
}
if (i > litlen+distlen) error_exit("bad tree");
len2huff(lithuff = h2, bits, litlen);
len2huff(disthuff = ((struct huff *)toybuf)+2, bits+litlen, distlen);
// Static huffman codes
} else {
lithuff = TT.fixlithuff;
disthuff = TT.fixdisthuff;
}
// Use huffman tables to decode block of compressed symbols
for (;;) {
int sym = huff_and_puff(bb, lithuff);
// Literal?
if (sym < 256) output_byte(sym);
// Copy range?
else if (sym > 256) {
int len, dist;
sym -= 257;
len = TT.lenbase[sym] + bitbuf_get(bb, TT.lenbits[sym]);
sym = huff_and_puff(bb, disthuff);
dist = TT.distbase[sym] + bitbuf_get(bb, TT.distbits[sym]);
sym = TT.pos & 32767;
while (len--) output_byte(TT.data[(TT.pos-dist) & 32767]);
// End of block
} else break;
}
}
// Was that the last block?
if (final) break;
}
if (TT.pos & 32767) {
xwrite(TT.outfd, TT.data, TT.pos & 32767);
if (TT.crcfunc) TT.crcfunc(TT.data, TT.pos & 32767);
}
}
// Deflate from TT.infd to bitbuf
// For deflate, TT.len = input read, TT.pos = input consumed
static void deflate(struct bitbuf *bb)
{
char *data = TT.data;
int len, final = 0;
TT.crc = ~0;
while (!final) {
// Read next half-window of data if we haven't hit EOF yet.
len = readall(TT.infd, data+(TT.len&32768), 32768);
if (len < 0) perror_exit("read"); // todo: add filename
if (len != 32768) final++;
if (TT.crcfunc) TT.crcfunc(data+(TT.len&32768), len);
// TT.len += len; crcfunc advances len
// store block as literal
bitbuf_put(bb, final, 1);
bitbuf_put(bb, 0, 1);
bitbuf_put(bb, 0, (8-bb->bitpos)&7);
bitbuf_put(bb, len, 16);
bitbuf_put(bb, 0xffff & ~len, 16);
// repeat until spanked
while (TT.pos != TT.len) {
unsigned pos = TT.pos & 65535;
bitbuf_put(bb, data[pos], 8);
// need to refill buffer?
if (!(32767 & ++TT.pos) && !final) break;
}
}
bitbuf_flush(bb);
}
// Allocate memory for deflate/inflate.
static void init_deflate(int compress)
{
int i, n = 1;
// compress needs 64k data and 32k each for hashhead and hashchain.
// decompress just needs 32k data.
TT.data = xmalloc(32768*(compress ? 4 : 1));
if (compress) {
TT.hashhead = (unsigned short *)(TT.data + 65536);
TT.hashchain = (unsigned short *)(TT.data + 65536 + 32768);
}
// Calculate lenbits, lenbase, distbits, distbase
*TT.lenbase = 3;
for (i = 0; i<sizeof(TT.lenbits)-1; i++) {
if (i>4) {
if (!(i&3)) {
TT.lenbits[i]++;
n <<= 1;
}
if (i == 27) n--;
else TT.lenbits[i+1] = TT.lenbits[i];
}
TT.lenbase[i+1] = n + TT.lenbase[i];
}
n = 0;
for (i = 0; i<sizeof(TT.distbits); i++) {
TT.distbase[i] = 1<<n;
if (i) TT.distbase[i] += TT.distbase[i-1];
if (i>3 && !(i&1)) n++;
TT.distbits[i] = n;
}
// Init fixed huffman tables
for (i=0; i<288; i++) toybuf[i] = 8 + (i>143) - ((i>255)<<1) + (i>279);
len2huff(TT.fixlithuff = ((struct huff *)toybuf)+3, toybuf, 288);
memset(toybuf, 5, 30);
len2huff(TT.fixdisthuff = ((struct huff *)toybuf)+4, toybuf, 30);
}
// Return true/false whether we consumed a gzip header.
static int is_gzip(struct bitbuf *bb)
{
int flags;
// Confirm signature
if (bitbuf_get(bb, 24) != 0x088b1f || (flags = bitbuf_get(bb, 8)) > 31)
return 0;
bitbuf_skip(bb, 6*8);
// Skip extra, name, comment, header CRC fields
if (flags & 4) bitbuf_skip(bb, 16);
if (flags & 8) while (bitbuf_get(bb, 8));
if (flags & 16) while (bitbuf_get(bb, 8));
if (flags & 2) bitbuf_skip(bb, 16);
return 1;
}
void gzip_crc(char *data, int len)
{
int i;
unsigned crc, *crc_table = (unsigned *)(toybuf+sizeof(toybuf)-1024);
crc = TT.crc;
for (i=0; i<len; i++) crc = crc_table[(crc^data[i])&0xff] ^ (crc>>8);
TT.crc = crc;
TT.len += len;
}
static void do_gzip(int fd, char *name)
{
struct bitbuf *bb = bitbuf_init(1, sizeof(toybuf));
// Header from RFC 1952 section 2.2:
// 2 ID bytes (1F, 8b), gzip method byte (8=deflate), FLAG byte (none),
// 4 byte MTIME (zeroed), Extra Flags (2=maximum compression),
// Operating System (FF=unknown)
TT.infd = fd;
xwrite(bb->fd, "\x1f\x8b\x08\0\0\0\0\0\x02\xff", 10);
// Use last 1k of toybuf for little endian crc table
crc_init((unsigned *)(toybuf+sizeof(toybuf)-1024), 1);
TT.crcfunc = gzip_crc;
deflate(bb);
// tail: crc32, len32
bitbuf_put(bb, 0, (8-bb->bitpos)&7);
bitbuf_put(bb, ~TT.crc, 32);
bitbuf_put(bb, TT.len, 32);
bitbuf_flush(bb);
free(bb);
}
static void do_zcat(int fd, char *name)
{
struct bitbuf *bb = bitbuf_init(fd, sizeof(toybuf));
if (!is_gzip(bb)) error_exit("not gzip");
TT.outfd = 1;
// Use last 1k of toybuf for little endian crc table
crc_init((unsigned *)(toybuf+sizeof(toybuf)-1024), 1);
TT.crcfunc = gzip_crc;
inflate(bb);
// tail: crc32, len32
bitbuf_skip(bb, (8-bb->bitpos)&7);
if (~TT.crc != bitbuf_get(bb, 32) || TT.len != bitbuf_get(bb, 32))
error_exit("bad crc");
free(bb);
}
// Parse many different kinds of command line argument:
void compress_main(void)
{
// todo: this
printf("hello world");
}
|