aboutsummaryrefslogtreecommitdiff
path: root/include/tgmath.h
blob: 46fade4ee1f061371011d2464baae2bc194f7c7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*	$OpenBSD: tgmath.h,v 1.1 2011/07/08 19:28:06 martynas Exp $	*/

/*-
 * Copyright (c) 2004 Stefan Farfeleder.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD: src/include/tgmath.h,v 1.5 2007/02/02 18:30:23 schweikh Exp $
 */

#ifndef _TGMATH_H_
#define	_TGMATH_H_

#include <complex.h>
#include <math.h>

/*
 * This implementation of <tgmath.h> requires two implementation-dependent
 * macros to be defined:
 * __tg_impl_simple(x, y, z, fn, fnf, fnl, ...)
 *	Invokes fnl() if the corresponding real type of x, y or z is long
 *	double, fn() if it is double or any has an integer type, and fnf()
 *	otherwise.
 * __tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...)
 *	Invokes [c]fnl() if the corresponding real type of x, y or z is long
 *	double, [c]fn() if it is double or any has an integer type, and
 *	[c]fnf() otherwise.  The function with the 'c' prefix is called if
 *	any of x, y or z is a complex number.
 * Both macros call the chosen function with all additional arguments passed
 * to them, as given by __VA_ARGS__.
 *
 * Note that these macros cannot be implemented with C's ?: operator,
 * because the return type of the whole expression would incorrectly be long
 * double complex regardless of the argument types.
 */

#if __GNUC_PREREQ__(3, 1)
#define	__tg_type(e, t)	__builtin_types_compatible_p(__typeof__(e), t)
#define	__tg_type3(e1, e2, e3, t)					\
	(__tg_type(e1, t) || __tg_type(e2, t) || __tg_type(e3, t))
#define	__tg_type_corr(e1, e2, e3, t)					\
	(__tg_type3(e1, e2, e3, t) || __tg_type3(e1, e2, e3, t _Complex))
#define	__tg_integer(e1, e2, e3)					\
	(((__typeof__(e1))1.5 == 1) || ((__typeof__(e2))1.5 == 1) ||	\
	    ((__typeof__(e3))1.5 == 1))
#define	__tg_is_complex(e1, e2, e3)					\
	(__tg_type3(e1, e2, e3, float _Complex) ||			\
	    __tg_type3(e1, e2, e3, double _Complex) ||			\
	    __tg_type3(e1, e2, e3, long double _Complex) ||		\
	    __tg_type3(e1, e2, e3, __typeof__(_Complex_I)))

#define	__tg_impl_simple(x, y, z, fn, fnf, fnl, ...)			\
	__builtin_choose_expr(__tg_type_corr(x, y, z, long double),	\
	    fnl(__VA_ARGS__), __builtin_choose_expr(			\
		__tg_type_corr(x, y, z, double) || __tg_integer(x, y, z),\
		fn(__VA_ARGS__), fnf(__VA_ARGS__)))

#define	__tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...)	\
	__builtin_choose_expr(__tg_is_complex(x, y, z),			\
	    __tg_impl_simple(x, y, z, cfn, cfnf, cfnl, __VA_ARGS__),	\
	    __tg_impl_simple(x, y, z, fn, fnf, fnl, __VA_ARGS__))

#else	/* __GNUC__ */
#error "<tgmath.h> not implemented for this compiler"
#endif	/* !__GNUC__ */

/* Macros to save lots of repetition below */
#define	__tg_simple(x, fn)						\
	__tg_impl_simple(x, x, x, fn, fn##f, fn##l, x)
#define	__tg_simple2(x, y, fn)						\
	__tg_impl_simple(x, x, y, fn, fn##f, fn##l, x, y)
#define	__tg_simplev(x, fn, ...)					\
	__tg_impl_simple(x, x, x, fn, fn##f, fn##l, __VA_ARGS__)
#define	__tg_full(x, fn)						\
	__tg_impl_full(x, x, x, fn, fn##f, fn##l, c##fn, c##fn##f, c##fn##l, x)

/* 7.22#4 -- These macros expand to real or complex functions, depending on
 * the type of their arguments. */
#define	acos(x)		__tg_full(x, acos)
#define	asin(x)		__tg_full(x, asin)
#define	atan(x)		__tg_full(x, atan)
#define	acosh(x)	__tg_full(x, acosh)
#define	asinh(x)	__tg_full(x, asinh)
#define	atanh(x)	__tg_full(x, atanh)
#define	cos(x)		__tg_full(x, cos)
#define	sin(x)		__tg_full(x, sin)
#define	tan(x)		__tg_full(x, tan)
#define	cosh(x)		__tg_full(x, cosh)
#define	sinh(x)		__tg_full(x, sinh)
#define	tanh(x)		__tg_full(x, tanh)
#define	exp(x)		__tg_full(x, exp)
#define	log(x)		__tg_full(x, log)
#define	pow(x, y)	__tg_impl_full(x, x, y, pow, powf, powl,	\
			    cpow, cpowf, cpowl, x, y)
#define	sqrt(x)		__tg_full(x, sqrt)

/* "The corresponding type-generic macro for fabs and cabs is fabs." */
#define	fabs(x)		__tg_impl_full(x, x, x, fabs, fabsf, fabsl,	\
    			    cabs, cabsf, cabsl, x)

/* 7.22#5 -- These macros are only defined for arguments with real type. */
#define	atan2(x, y)	__tg_simple2(x, y, atan2)
#define	cbrt(x)		__tg_simple(x, cbrt)
#define	ceil(x)		__tg_simple(x, ceil)
#define	copysign(x, y)	__tg_simple2(x, y, copysign)
#define	erf(x)		__tg_simple(x, erf)
#define	erfc(x)		__tg_simple(x, erfc)
#define	exp2(x)		__tg_simple(x, exp2)
#define	expm1(x)	__tg_simple(x, expm1)
#define	fdim(x, y)	__tg_simple2(x, y, fdim)
#define	floor(x)	__tg_simple(x, floor)
#define	fma(x, y, z)	__tg_impl_simple(x, y, z, fma, fmaf, fmal, x, y, z)
#define	fmax(x, y)	__tg_simple2(x, y, fmax)
#define	fmin(x, y)	__tg_simple2(x, y, fmin)
#define	fmod(x, y)	__tg_simple2(x, y, fmod)
#define	frexp(x, y)	__tg_simplev(x, frexp, x, y)
#define	hypot(x, y)	__tg_simple2(x, y, hypot)
#define	ilogb(x)	__tg_simple(x, ilogb)
#define	ldexp(x, y)	__tg_simplev(x, ldexp, x, y)
#define	lgamma(x)	__tg_simple(x, lgamma)
#define	llrint(x)	__tg_simple(x, llrint)
#define	llround(x)	__tg_simple(x, llround)
#define	log10(x)	__tg_simple(x, log10)
#define	log1p(x)	__tg_simple(x, log1p)
#define	log2(x)		__tg_simple(x, log2)
#define	logb(x)		__tg_simple(x, logb)
#define	lrint(x)	__tg_simple(x, lrint)
#define	lround(x)	__tg_simple(x, lround)
#define	nearbyint(x)	__tg_simple(x, nearbyint)
#define	nextafter(x, y)	__tg_simple2(x, y, nextafter)
#define	nexttoward(x, y) __tg_simplev(x, nexttoward, x, y)
#define	remainder(x, y)	__tg_simple2(x, y, remainder)
#define	remquo(x, y, z)	__tg_impl_simple(x, x, y, remquo, remquof,	\
			    remquol, x, y, z)
#define	rint(x)		__tg_simple(x, rint)
#define	round(x)	__tg_simple(x, round)
#define	scalbn(x, y)	__tg_simplev(x, scalbn, x, y)
#define	scalbln(x, y)	__tg_simplev(x, scalbln, x, y)
#define	tgamma(x)	__tg_simple(x, tgamma)
#define	trunc(x)	__tg_simple(x, trunc)

/* 7.22#6 -- These macros always expand to complex functions. */
#define	carg(x)		__tg_simple(x, carg)
#define	cimag(x)	__tg_simple(x, cimag)
#define	conj(x)		__tg_simple(x, conj)
#define	cproj(x)	__tg_simple(x, cproj)
#define	creal(x)	__tg_simple(x, creal)

#endif /* !_TGMATH_H_ */