aboutsummaryrefslogtreecommitdiff
path: root/docs/busybox.net/programming.html
diff options
context:
space:
mode:
authorRob Landley <rob@landley.net>2006-05-11 15:00:32 +0000
committerRob Landley <rob@landley.net>2006-05-11 15:00:32 +0000
commitb73d2bf4bfac8f43cb068ba7a63a057eb9ca88ce (patch)
tree55b5e472cdb4d24c07621941769976dd99702c88 /docs/busybox.net/programming.html
parent8d2cb8be3b4c6be632911a2705b13e084ab9ef72 (diff)
downloadbusybox-b73d2bf4bfac8f43cb068ba7a63a057eb9ca88ce.tar.gz
Reorganize FAQ, update a few entries, and consolidate with programming.html.
Diffstat (limited to 'docs/busybox.net/programming.html')
-rw-r--r--docs/busybox.net/programming.html584
1 files changed, 0 insertions, 584 deletions
diff --git a/docs/busybox.net/programming.html b/docs/busybox.net/programming.html
deleted file mode 100644
index b73e6ef95..000000000
--- a/docs/busybox.net/programming.html
+++ /dev/null
@@ -1,584 +0,0 @@
-<!--#include file="header.html" -->
-
-<h2>Rob's notes on programming busybox.</h2>
-
-<ul>
- <li><a href="#goals">What are the goals of busybox?</a></li>
- <li><a href="#design">What is the design of busybox?</a></li>
- <li><a href="#source">How is the source code organized?</a></li>
- <ul>
- <li><a href="#source_applets">The applet directories.</a></li>
- <li><a href="#source_libbb">The busybox shared library (libbb)</a></li>
- </ul>
- <li><a href="#adding">Adding an applet to busybox</a></li>
- <li><a href="#standards">What standards does busybox adhere to?</a></li>
- <li><a href="#portability">Portability.</a></li>
- <li><a href="#tips">Tips and tricks.</a></li>
- <ul>
- <li><a href="#tips_encrypted_passwords">Encrypted Passwords</a></li>
- <li><a href="#tips_vfork">Fork and vfork</a></li>
- <li><a href="#tips_short_read">Short reads and writes</a></li>
- <li><a href="#tips_memory">Memory used by relocatable code, PIC, and static linking.</a></li>
- <li><a href="#tips_kernel_headers">Including Linux kernel headers.</a></li>
- </ul>
- <li><a href="#who">Who are the BusyBox developers?</a></li>
-</ul>
-
-<h2><b><a name="goals">What are the goals of busybox?</a></b></h2>
-
-<p>Busybox aims to be the smallest and simplest correct implementation of the
-standard Linux command line tools. First and foremost, this means the
-smallest executable size we can manage. We also want to have the simplest
-and cleanest implementation we can manage, be <a href="#standards">standards
-compliant</a>, minimize run-time memory usage (heap and stack), run fast, and
-take over the world.</p>
-
-<h2><b><a name="design">What is the design of busybox?</a></b></h2>
-
-<p>Busybox is like a swiss army knife: one thing with many functions.
-The busybox executable can act like many different programs depending on
-the name used to invoke it. Normal practice is to create a bunch of symlinks
-pointing to the busybox binary, each of which triggers a different busybox
-function. (See <a href="FAQ.html#getting_started">getting started</a> in the
-FAQ for more information on usage, and <a href="BusyBox.html">the
-busybox documentation</a> for a list of symlink names and what they do.)
-
-<p>The "one binary to rule them all" approach is primarily for size reasons: a
-single multi-purpose executable is smaller then many small files could be.
-This way busybox only has one set of ELF headers, it can easily share code
-between different apps even when statically linked, it has better packing
-efficiency by avoding gaps between files or compression dictionary resets,
-and so on.</p>
-
-<p>Work is underway on new options such as "make standalone" to build separate
-binaries for each applet, and a "libbb.so" to make the busybox common code
-available as a shared library. Neither is ready yet at the time of this
-writing.</p>
-
-<a name="source"></a>
-
-<h2><a name="source_applets"><b>The applet directories</b></a></h2>
-
-<p>The directory "applets" contains the busybox startup code (applets.c and
-busybox.c), and several subdirectories containing the code for the individual
-applets.</p>
-
-<p>Busybox execution starts with the main() function in applets/busybox.c,
-which sets the global variable bb_applet_name to argv[0] and calls
-run_applet_by_name() in applets/applets.c. That uses the applets[] array
-(defined in include/busybox.h and filled out in include/applets.h) to
-transfer control to the appropriate APPLET_main() function (such as
-cat_main() or sed_main()). The individual applet takes it from there.</p>
-
-<p>This is why calling busybox under a different name triggers different
-functionality: main() looks up argv[0] in applets[] to get a function pointer
-to APPLET_main().</p>
-
-<p>Busybox applets may also be invoked through the multiplexor applet
-"busybox" (see busybox_main() in applets/busybox.c), and through the
-standalone shell (grep for STANDALONE_SHELL in applets/shell/*.c).
-See <a href="FAQ.html#getting_started">getting started</a> in the
-FAQ for more information on these alternate usage mechanisms, which are
-just different ways to reach the relevant APPLET_main() function.</p>
-
-<p>The applet subdirectories (archival, console-tools, coreutils,
-debianutils, e2fsprogs, editors, findutils, init, loginutils, miscutils,
-modutils, networking, procps, shell, sysklogd, and util-linux) correspond
-to the configuration sub-menus in menuconfig. Each subdirectory contains the
-code to implement the applets in that sub-menu, as well as a Config.in
-file defining that configuration sub-menu (with dependencies and help text
-for each applet), and the makefile segment (Makefile.in) for that
-subdirectory.</p>
-
-<p>The run-time --help is stored in usage_messages[], which is initialized at
-the start of applets/applets.c and gets its help text from usage.h. During the
-build this help text is also used to generate the BusyBox documentation (in
-html, txt, and man page formats) in the docs directory. See
-<a href="#adding">adding an applet to busybox</a> for more
-information.</p>
-
-<h2><a name="source_libbb"><b>libbb</b></a></h2>
-
-<p>Most non-setup code shared between busybox applets lives in the libbb
-directory. It's a mess that evolved over the years without much auditing
-or cleanup. For anybody looking for a great project to break into busybox
-development with, documenting libbb would be both incredibly useful and good
-experience.</p>
-
-<p>Common themes in libbb include allocation functions that test
-for failure and abort the program with an error message so the caller doesn't
-have to test the return value (xmalloc(), xstrdup(), etc), wrapped versions
-of open(), close(), read(), and write() that test for their own failures
-and/or retry automatically, linked list management functions (llist.c),
-command line argument parsing (getopt_ulflags.c), and a whole lot more.</p>
-
-<h2><a name="adding"><b>Adding an applet to busybox</b></a></h2>
-
-<p>To add a new applet to busybox, first pick a name for the applet and
-a corresponding CONFIG_NAME. Then do this:</p>
-
-<ul>
-<li>Figure out where in the busybox source tree your applet best fits,
-and put your source code there. Be sure to use APPLET_main() instead
-of main(), where APPLET is the name of your applet.</li>
-
-<li>Add your applet to the relevant Config.in file (which file you add
-it to determines where it shows up in "make menuconfig"). This uses
-the same general format as the linux kernel's configuration system.</li>
-
-<li>Add your applet to the relevant Makefile.in file (in the same
-directory as the Config.in you chose), using the existing entries as a
-template and the same CONFIG symbol as you used for Config.in. (Don't
-forget "needlibm" or "needcrypt" if your applet needs libm or
-libcrypt.)</li>
-
-<li>Add your applet to "include/applets.h", using one of the existing
-entries as a template. (Note: this is in alphabetical order. Applets
-are found via binary search, and if you add an applet out of order it
-won't work.)</li>
-
-<li>Add your applet's runtime help text to "include/usage.h". You need
-at least appname_trivial_usage (the minimal help text, always included
-in the busybox binary when this applet is enabled) and appname_full_usage
-(extra help text included in the busybox binary with
-CONFIG_FEATURE_VERBOSE_USAGE is enabled), or it won't compile.
-The other two help entry types (appname_example_usage and
-appname_notes_usage) are optional. They don't take up space in the binary,
-but instead show up in the generated documentation (BusyBox.html,
-BusyBox.txt, and the man page BusyBox.1).</li>
-
-<li>Run menuconfig, switch your applet on, compile, test, and fix the
-bugs. Be sure to try both "allyesconfig" and "allnoconfig" (and
-"allbareconfig" if relevant).</li>
-
-</ul>
-
-<h2><a name="standards">What standards does busybox adhere to?</a></h2>
-
-<p>The standard we're paying attention to is the "Shell and Utilities"
-portion of the <a href="http://www.opengroup.org/onlinepubs/009695399/">Open
-Group Base Standards</a> (also known as the Single Unix Specification version
-3 or SUSv3). Note that paying attention isn't necessarily the same thing as
-following it.</p>
-
-<p>SUSv3 doesn't even mention things like init, mount, tar, or losetup, nor
-commonly used options like echo's '-e' and '-n', or sed's '-i'. Busybox is
-driven by what real users actually need, not the fact the standard believes
-we should implement ed or sccs. For size reasons, we're unlikely to include
-much internationalization support beyond UTF-8, and on top of all that, our
-configuration menu lets developers chop out features to produce smaller but
-very non-standard utilities.</p>
-
-<p>Also, Busybox is aimed primarily at Linux. Unix standards are interesting
-because Linux tries to adhere to them, but portability to dozens of platforms
-is only interesting in terms of offering a restricted feature set that works
-everywhere, not growing dozens of platform-specific extensions. Busybox
-should be portable to all hardware platforms Linux supports, and any other
-similar operating systems that are easy to do and won't require much
-maintenance.</p>
-
-<p>In practice, standards compliance tends to be a clean-up step once an
-applet is otherwise finished. When polishing and testing a busybox applet,
-we ensure we have at least the option of full standards compliance, or else
-document where we (intentionally) fall short.</p>
-
-<h2><a name="portability">Portability.</a></h2>
-
-<p>Busybox is a Linux project, but that doesn't mean we don't have to worry
-about portability. First of all, there are different hardware platforms,
-different C library implementations, different versions of the kernel and
-build toolchain... The file "include/platform.h" exists to centralize and
-encapsulate various platform-specific things in one place, so most busybox
-code doesn't have to care where it's running.</p>
-
-<p>To start with, Linux runs on dozens of hardware platforms. We try to test
-each release on x86, x86-64, arm, power pc, and mips. (Since qemu can handle
-all of these, this isn't that hard.) This means we have to care about a number
-of portability issues like endianness, word size, and alignment, all of which
-belong in platform.h. That header handles conditional #includes and gives
-us macros we can use in the rest of our code. At some point in the future
-we might grow a platform.c, possibly even a platform subdirectory. As long
-as the applets themselves don't have to care.</p>
-
-<p>On a related note, we made the "default signedness of char varies" problem
-go away by feeding the compiler -funsigned-char. This gives us consistent
-behavior on all platforms, and defaults to 8-bit clean text processing (which
-gets us halfway to UTF-8 support). NOMMU support is less easily separated
-(see the tips section later in this document), but we're working on it.</p>
-
-<p>Another type of portability is build environments: we unapologetically use
-a number of gcc and glibc extensions (as does the Linux kernel), but these have
-been picked up by packages like uClibc, TCC, and Intel's C Compiler. As for
-gcc, we take advantage of newer compiler optimizations to get the smallest
-possible size, but we also regression test against an older build environment
-using the Red Hat 9 image at "http://busybox.net/downloads/qemu". This has a
-2.4 kernel, gcc 3.2, make 3.79.1, and glibc 2.3, and is the oldest
-build/deployment environment we still put any effort into maintaining. (If
-anyone takes an interest in older kernels you're welcome to submit patches,
-but the effort would probably be better spent
-<a href="http://www.selenic.com/linux-tiny/">trimming
-down the 2.6 kernel</a>.) Older gcc versions than that are uninteresting since
-we now use c99 features, although
-<a href="http://fabrice.bellard.free.fr/tcc/">tcc</a> might be worth a
-look.</p>
-
-<p>We also test busybox against the current release of uClibc. Older versions
-of uClibc aren't very interesting (they were buggy, and uClibc wasn't really
-usable as a general-purpose C library before version 0.9.26 anyway).</p>
-
-<p>Other unix implementations are mostly uninteresting, since Linux binaries
-have become the new standard for portable Unix programs. Specifically,
-the ubiquity of Linux was cited as the main reason the Intel Binary
-Compatability Standard 2 died, by the standards group organized to name a
-successor to ibcs2: <a href="http://www.telly.org/86open/">the 86open
-project</a>. That project disbanded in 1999 with the endorsement of an
-existing standard: Linux ELF binaries. Since then, the major players at the
-time (such as <a
-href=http://www-03.ibm.com/servers/aix/products/aixos/linux/index.html>AIX</a>, <a
-href=http://www.sun.com/software/solaris/ds/linux_interop.jsp#3>Solaris</a>, and
-<a href=http://www.onlamp.com/pub/a/bsd/2000/03/17/linuxapps.html>FreeBSD</a>)
-have all either grown Linux support or folded.</p>
-
-<p>The major exceptions are newcomer MacOS X, some embedded environments
-(such as newlib+libgloss) which provide a posix environment but not a full
-Linux environment, and environments like Cygwin that provide only partial Linux
-emulation. Also, some embedded Linux systems run a Linux kernel but amputate
-things like the /proc directory to save space.</p>
-
-<p>Supporting these systems is largely a question of providing a clean subset
-of BusyBox's functionality -- whichever applets can easily be made to
-work in that environment. Annotating the configuration system to
-indicate which applets require which prerequisites (such as procfs) is
-also welcome. Other efforts to support these systems (swapping #include
-files to build in different environments, adding adapter code to platform.h,
-adding more extensive special-case supporting infrastructure such as mount's
-legacy mtab support) are handled on a case-by-case basis. Support that can be
-cleanly hidden in platform.h is reasonably attractive, and failing that
-support that can be cleanly separated into a separate conditionally compiled
-file is at least worth a look. Special-case code in the body of an applet is
-something we're trying to avoid.</p>
-
-<h2><a name="tips" />Programming tips and tricks.</a></h2>
-
-<p>Various things busybox uses that aren't particularly well documented
-elsewhere.</p>
-
-<h2><a name="tips_encrypted_passwords">Encrypted Passwords</a></h2>
-
-<p>Password fields in /etc/passwd and /etc/shadow are in a special format.
-If the first character isn't '$', then it's an old DES style password. If
-the first character is '$' then the password is actually three fields
-separated by '$' characters:</p>
-<pre>
- <b>$type$salt$encrypted_password</b>
-</pre>
-
-<p>The "type" indicates which encryption algorithm to use: 1 for MD5 and 2 for SHA1.</p>
-
-<p>The "salt" is a bunch of ramdom characters (generally 8) the encryption
-algorithm uses to perturb the password in a known and reproducible way (such
-as by appending the random data to the unencrypted password, or combining
-them with exclusive or). Salt is randomly generated when setting a password,
-and then the same salt value is re-used when checking the password. (Salt is
-thus stored unencrypted.)</p>
-
-<p>The advantage of using salt is that the same cleartext password encrypted
-with a different salt value produces a different encrypted value.
-If each encrypted password uses a different salt value, an attacker is forced
-to do the cryptographic math all over again for each password they want to
-check. Without salt, they could simply produce a big dictionary of commonly
-used passwords ahead of time, and look up each password in a stolen password
-file to see if it's a known value. (Even if there are billions of possible
-passwords in the dictionary, checking each one is just a binary search against
-a file only a few gigabytes long.) With salt they can't even tell if two
-different users share the same password without guessing what that password
-is and decrypting it. They also can't precompute the attack dictionary for
-a specific password until they know what the salt value is.</p>
-
-<p>The third field is the encrypted password (plus the salt). For md5 this
-is 22 bytes.</p>
-
-<p>The busybox function to handle all this is pw_encrypt(clear, salt) in
-"libbb/pw_encrypt.c". The first argument is the clear text password to be
-encrypted, and the second is a string in "$type$salt$password" format, from
-which the "type" and "salt" fields will be extracted to produce an encrypted
-value. (Only the first two fields are needed, the third $ is equivalent to
-the end of the string.) The return value is an encrypted password in
-/etc/passwd format, with all three $ separated fields. It's stored in
-a static buffer, 128 bytes long.</p>
-
-<p>So when checking an existing password, if pw_encrypt(text,
-old_encrypted_password) returns a string that compares identical to
-old_encrypted_password, you've got the right password. When setting a new
-password, generate a random 8 character salt string, put it in the right
-format with sprintf(buffer, "$%c$%s", type, salt), and feed buffer as the
-second argument to pw_encrypt(text,buffer).</p>
-
-<h2><a name="tips_vfork">Fork and vfork</a></h2>
-
-<p>On systems that haven't got a Memory Management Unit, fork() is unreasonably
-expensive to implement (and sometimes even impossible), so a less capable
-function called vfork() is used instead. (Using vfork() on a system with an
-MMU is like pounding a nail with a wrench. Not the best tool for the job, but
-it works.)</p>
-
-<p>Busybox hides the difference between fork() and vfork() in
-libbb/bb_fork_exec.c. If you ever want to fork and exec, use bb_fork_exec()
-(which returns a pid and takes the same arguments as execve(), although in
-this case envp can be NULL) and don't worry about it. This description is
-here in case you want to know why that does what it does.</p>
-
-<p>Implementing fork() depends on having a Memory Management Unit. With an
-MMU then you can simply set up a second set of page tables and share the
-physical memory via copy-on-write. So a fork() followed quickly by exec()
-only copies a few pages of the parent's memory, just the ones it changes
-before freeing them.</p>
-
-<p>With a very primitive MMU (using a base pointer plus length instead of page
-tables, which can provide virtual addresses and protect processes from each
-other, but no copy on write) you can still implement fork. But it's
-unreasonably expensive, because you have to copy all the parent process'
-memory into the new process (which could easily be several megabytes per fork).
-And you have to do this even though that memory gets freed again as soon as the
-exec happens. (This is not just slow and a waste of space but causes memory
-usage spikes that can easily cause the system to run out of memory.)</p>
-
-<p>Without even a primitive MMU, you have no virtual addresses. Every process
-can reach out and touch any other process' memory, because all pointers are to
-physical addresses with no protection. Even if you copy a process' memory to
-new physical addresses, all of its pointers point to the old objects in the
-old process. (Searching through the new copy's memory for pointers and
-redirect them to the new locations is not an easy problem.)</p>
-
-<p>So with a primitive or missing MMU, fork() is just not a good idea.</p>
-
-<p>In theory, vfork() is just a fork() that writeably shares the heap and stack
-rather than copying it (so what one process writes the other one sees). In
-practice, vfork() has to suspend the parent process until the child does exec,
-at which point the parent wakes up and resumes by returning from the call to
-vfork(). All modern kernel/libc combinations implement vfork() to put the
-parent to sleep until the child does its exec. There's just no other way to
-make it work: the parent has to know the child has done its exec() or exit()
-before it's safe to return from the function it's in, so it has to block
-until that happens. In fact without suspending the parent there's no way to
-even store separate copies of the return value (the pid) from the vfork() call
-itself: both assignments write into the same memory location.</p>
-
-<p>One way to understand (and in fact implement) vfork() is this: imagine
-the parent does a setjmp and then continues on (pretending to be the child)
-until the exec() comes around, then the _exec_ does the actual fork, and the
-parent does a longjmp back to the original vfork call and continues on from
-there. (It thus becomes obvious why the child can't return, or modify
-local variables it doesn't want the parent to see changed when it resumes.)
-
-<p>Note a common mistake: the need for vfork doesn't mean you can't have two
-processes running at the same time. It means you can't have two processes
-sharing the same memory without stomping all over each other. As soon as
-the child calls exec(), the parent resumes.</p>
-
-<p>If the child's attempt to call exec() fails, the child should call _exit()
-rather than a normal exit(). This avoids any atexit() code that might confuse
-the parent. (The parent should never call _exit(), only a vforked child that
-failed to exec.)</p>
-
-<p>(Now in theory, a nommu system could just copy the _stack_ when it forks
-(which presumably is much shorter than the heap), and leave the heap shared.
-Even with no MMU at all
-In practice, you've just wound up in a multi-threaded situation and you can't
-do a malloc() or free() on your heap without freeing the other process' memory
-(and if you don't have the proper locking for being threaded, corrupting the
-heap if both of you try to do it at the same time and wind up stomping on
-each other while traversing the free memory lists). The thing about vfork is
-that it's a big red flag warning "there be dragons here" rather than
-something subtle and thus even more dangerous.)</p>
-
-<h2><a name="tips_sort_read">Short reads and writes</a></h2>
-
-<p>Busybox has special functions, bb_full_read() and bb_full_write(), to
-check that all the data we asked for got read or written. Is this a real
-world consideration? Try the following:</p>
-
-<pre>while true; do echo hello; sleep 1; done | tee out.txt</pre>
-
-<p>If tee is implemented with bb_full_read(), tee doesn't display output
-in real time but blocks until its entire input buffer (generally a couple
-kilobytes) is read, then displays it all at once. In that case, we _want_
-the short read, for user interface reasons. (Note that read() should never
-return 0 unless it has hit the end of input, and an attempt to write 0
-bytes should be ignored by the OS.)</p>
-
-<p>As for short writes, play around with two processes piping data to each
-other on the command line (cat bigfile | gzip &gt; out.gz) and suspend and
-resume a few times (ctrl-z to suspend, "fg" to resume). The writer can
-experience short writes, which are especially dangerous because if you don't
-notice them you'll discard data. They can also happen when a system is under
-load and a fast process is piping to a slower one. (Such as an xterm waiting
-on x11 when the scheduler decides X is being a CPU hog with all that
-text console scrolling...)</p>
-
-<p>So will data always be read from the far end of a pipe at the
-same chunk sizes it was written in? Nope. Don't rely on that. For one
-counterexample, see <a href="http://www.faqs.org/rfcs/rfc896.html">rfc 896
-for Nagle's algorithm</a>, which waits a fraction of a second or so before
-sending out small amounts of data through a TCP/IP connection in case more
-data comes in that can be merged into the same packet. (In case you were
-wondering why action games that use TCP/IP set TCP_NODELAY to lower the latency
-on their their sockets, now you know.)</p>
-
-<h2><a name="tips_memory">Memory used by relocatable code, PIC, and static linking.</a></h2>
-
-<p>The downside of standard dynamic linking is that it results in self-modifying
-code. Although each executable's pages are mmaped() into a process' address
-space from the executable file and are thus naturally shared between processes
-out of the page cache, the library loader (ld-linux.so.2 or ld-uClibc.so.0)
-writes to these pages to supply addresses for relocatable symbols. This
-dirties the pages, triggering copy-on-write allocation of new memory for each
-processes' dirtied pages.</p>
-
-<p>One solution to this is Position Independent Code (PIC), a way of linking
-a file so all the relocations are grouped together. This dirties fewer
-pages (often just a single page) for each process' relocations. The down
-side is this results in larger executables, which take up more space on disk
-(and a correspondingly larger space in memory). But when many copies of the
-same program are running, PIC dynamic linking trades a larger disk footprint
-for a smaller memory footprint, by sharing more pages.</p>
-
-<p>A third solution is static linking. A statically linked program has no
-relocations, and thus the entire executable is shared between all running
-instances. This tends to have a significantly larger disk footprint, but
-on a system with only one or two executables, shared libraries aren't much
-of a win anyway.</p>
-
-<p>You can tell the glibc linker to display debugging information about its
-relocations with the environment variable "LD_DEBUG". Try
-"LD_DEBUG=help /bin/true" for a list of commands. Learning to interpret
-"LD_DEBUG=statistics cat /proc/self/statm" could be interesting.</p>
-
-<p>For more on this topic, here's Rich Felker:</p>
-<blockquote>
-<p>Dynamic linking (without fixed load addresses) fundamentally requires
-at least one dirty page per dso that uses symbols. Making calls (but
-never taking the address explicitly) to functions within the same dso
-does not require a dirty page by itself, but will with ELF unless you
-use -Bsymbolic or hidden symbols when linking.</p>
-
-<p>ELF uses significant additional stack space for the kernel to pass all
-the ELF data structures to the newly created process image. These are
-located above the argument list and environment. This normally adds 1
-dirty page to the process size.</p>
-
-<p>The ELF dynamic linker has its own data segment, adding one or more
-dirty pages. I believe it also performs relocations on itself.</p>
-
-<p>The ELF dynamic linker makes significant dynamic allocations to manage
-the global symbol table and the loaded dso's. This data is never
-freed. It will be needed again if libdl is used, so unconditionally
-freeing it is not possible, but normal programs do not use libdl. Of
-course with glibc all programs use libdl (due to nsswitch) so the
-issue was never addressed.</p>
-
-<p>ELF also has the issue that segments are not page-aligned on disk.
-This saves up to 4k on disk, but at the expense of using an additional
-dirty page in most cases, due to a large portion of the first data
-page being filled with a duplicate copy of the last text page.</p>
-
-<p>The above is just a partial list of the tiny memory penalties of ELF
-dynamic linking, which eventually add up to quite a bit. The smallest
-I've been able to get a process down to is 8 dirty pages, and the
-above factors seem to mostly account for it (but some were difficult
-to measure).</p>
-</blockquote>
-
-<h2><a name="tips_kernel_headers"></a>Including kernel headers</h2>
-
-<p>The "linux" or "asm" directories of /usr/include contain Linux kernel
-headers, so that the C library can talk directly to the Linux kernel. In
-a perfect world, applications shouldn't include these headers directly, but
-we don't live in a perfect world.</p>
-
-<p>For example, Busybox's losetup code wants linux/loop.c because nothing else
-#defines the structures to call the kernel's loopback device setup ioctls.
-Attempts to cut and paste the information into a local busybox header file
-proved incredibly painful, because portions of the loop_info structure vary by
-architecture, namely the type __kernel_dev_t has different sizes on alpha,
-arm, x86, and so on. Meaning we either #include <linux/posix_types.h> or
-we hardwire #ifdefs to check what platform we're building on and define this
-type appropriately for every single hardware architecture supported by
-Linux, which is simply unworkable.</p>
-
-<p>This is aside from the fact that the relevant type defined in
-posix_types.h was renamed to __kernel_old_dev_t during the 2.5 series, so
-to cut and paste the structure into our header we have to #include
-<linux/version.h> to figure out which name to use. (What we actually do is
-check if we're building on 2.6, and if so just use the new 64 bit structure
-instead to avoid the rename entirely.) But we still need the version
-check, since 2.4 didn't have the 64 bit structure.</p>
-
-<p>The BusyBox developers spent <u>two years</u> _two years_ trying to figure
-out a clean way to do all this.  There isn't one. The losetup in the
-util-linux package from kernel.org isn't doing it cleanly either, they just
-hide the ugliness by nesting #include files. Their mount/loop.h
-#includes "my_dev_t.h", which #includes <linux/posix_types.h> and
-<linux/version.h> just like we do. There simply is no alternative.</p>
-
-<p>We should never directly include kernel headers when there's a better
-way to do it, but block copying information out of the kernel headers is not
-a better way.</p>
-
-<h2><a name="who">Who are the BusyBox developers?</a></h2>
-
-<p>The following login accounts currently exist on busybox.net. (I.E. these
-people can commit <a href="http://busybox.net/downloads/patches">patches</a>
-into subversion for the BusyBox, uClibc, and buildroot projects.)</p>
-
-<pre>
-aldot :Bernhard Fischer
-andersen :Erik Andersen <- uClibc and BuildRoot maintainer.
-bug1 :Glenn McGrath
-davidm :David McCullough
-gkajmowi :Garrett Kajmowicz <- uClibc++ maintainer
-jbglaw :Jan-Benedict Glaw
-jocke :Joakim Tjernlund
-landley :Rob Landley <- BusyBox maintainer
-lethal :Paul Mundt
-mjn3 :Manuel Novoa III
-osuadmin :osuadmin
-pgf :Paul Fox
-pkj :Peter Kjellerstedt
-prpplague :David Anders
-psm :Peter S. Mazinger
-russ :Russ Dill
-sandman :Robert Griebl
-sjhill :Steven J. Hill
-solar :Ned Ludd
-timr :Tim Riker
-tobiasa :Tobias Anderberg
-vapier :Mike Frysinger
-</pre>
-
-<p>The following accounts used to exist on busybox.net, but don't anymore so
-I can't ask /etc/passwd for their names. (If anybody would like to make
-a stab at it...)</p>
-
-<pre>
-aaronl
-beppu
-dwhedon
-erik : Also Erik Andersen?
-gfeldman
-jimg
-kraai
-markw
-miles
-proski
-rjune
-tausq
-vodz :Vladimir N. Oleynik
-</pre>
-
-
-<br>
-<br>
-<br>
-
-<!--#include file="footer.html" -->