aboutsummaryrefslogtreecommitdiff
path: root/libbb/sha1.c
blob: 76d5c8fbb075cf4700ce0941797923f4996f8322 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/* vi: set sw=4 ts=4: */
/*
 * Based on shasum from http://www.netsw.org/crypto/hash/
 * Majorly hacked up to use Dr Brian Gladman's sha1 code
 *
 * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 * Copyright (C) 2003 Glenn L. McGrath
 * Copyright (C) 2003 Erik Andersen
 *
 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
 *
 * ---------------------------------------------------------------------------
 * Issue Date: 10/11/2002
 *
 * This is a byte oriented version of SHA1 that operates on arrays of bytes
 * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
 *
 * ---------------------------------------------------------------------------
 *
 * SHA256 and SHA512 parts are:
 * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
 * TODO: shrink them.
 */

#include "libbb.h"

#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
/* for sha512: */
#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
#if BB_LITTLE_ENDIAN
static inline uint64_t hton64(uint64_t v)
{
	return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32);
}
#else
#define hton64(v) (v)
#endif
#define ntoh64(v) hton64(v)

/* To check alignment gcc has an appropriate operator.  Other
   compilers don't.  */
#if defined(__GNUC__) && __GNUC__ >= 2
# define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0)
#else
# define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0)
#endif


#define SHA1_BLOCK_SIZE  64
#define SHA1_DIGEST_SIZE 20
#define SHA1_HASH_SIZE   SHA1_DIGEST_SIZE
#define SHA1_MASK        (SHA1_BLOCK_SIZE - 1)

static void sha1_compile(sha1_ctx_t *ctx)
{
	uint32_t w[80], i, a, b, c, d, e, t;

	/* note that words are compiled from the buffer into 32-bit */
	/* words in big-endian order so an order reversal is needed */
	/* here on little endian machines                           */
	for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
		w[i] = ntohl(ctx->wbuf[i]);

	for (/*i = SHA1_BLOCK_SIZE / 4*/; i < 80; ++i) {
		t = w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16];
		w[i] = rotl32(t, 1);
	}

	a = ctx->hash[0];
	b = ctx->hash[1];
	c = ctx->hash[2];
	d = ctx->hash[3];
	e = ctx->hash[4];

/* Reverse byte order in 32-bit words   */
#define ch(x,y,z)        ((z) ^ ((x) & ((y) ^ (z))))
#define parity(x,y,z)    ((x) ^ (y) ^ (z))
#define maj(x,y,z)       (((x) & (y)) | ((z) & ((x) | (y))))
/* A normal version as set out in the FIPS. This version uses   */
/* partial loop unrolling and is optimised for the Pentium 4    */
#define rnd(f,k) \
	do { \
		t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
		e = d; d = c; c = rotl32(b, 30); b = t; \
	} while (0)

	for (i = 0; i < 20; ++i)
		rnd(ch, 0x5a827999);

	for (i = 20; i < 40; ++i)
		rnd(parity, 0x6ed9eba1);

	for (i = 40; i < 60; ++i)
		rnd(maj, 0x8f1bbcdc);

	for (i = 60; i < 80; ++i)
		rnd(parity, 0xca62c1d6);
#undef ch
#undef parity
#undef maj
#undef rnd

	ctx->hash[0] += a;
	ctx->hash[1] += b;
	ctx->hash[2] += c;
	ctx->hash[3] += d;
	ctx->hash[4] += e;
}

/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 64 == 0.  */
static void sha256_process_block(const void *buffer, size_t len, sha256_ctx_t *ctx)
{
	/* Constants for SHA256 from FIPS 180-2:4.2.2.  */
	static const uint32_t K[64] = {
		0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
		0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
		0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
		0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
		0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
		0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
		0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
		0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
		0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
		0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
		0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
		0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
		0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
		0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
		0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
		0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
	};
	const uint32_t *words = buffer;
	size_t nwords = len / sizeof(uint32_t);
	uint32_t a = ctx->H[0];
	uint32_t b = ctx->H[1];
	uint32_t c = ctx->H[2];
	uint32_t d = ctx->H[3];
	uint32_t e = ctx->H[4];
	uint32_t f = ctx->H[5];
	uint32_t g = ctx->H[6];
	uint32_t h = ctx->H[7];

	/* First increment the byte count.  FIPS 180-2 specifies the possible
	   length of the file up to 2^64 bits.  Here we only compute the
	   number of bytes.  Do a double word increment.  */
	ctx->total[0] += len;
	if (ctx->total[0] < len)
		ctx->total[1]++;

	/* Process all bytes in the buffer with 64 bytes in each round of
	   the loop.  */
	while (nwords > 0) {
		uint32_t W[64];
		uint32_t a_save = a;
		uint32_t b_save = b;
		uint32_t c_save = c;
		uint32_t d_save = d;
		uint32_t e_save = e;
		uint32_t f_save = f;
		uint32_t g_save = g;
		uint32_t h_save = h;

		/* Operators defined in FIPS 180-2:4.1.2.  */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))

		/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
		for (unsigned t = 0; t < 16; ++t) {
			W[t] = ntohl(*words);
			++words;
		}
		for (unsigned t = 16; t < 64; ++t)
			W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];

		/* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
		for (unsigned t = 0; t < 64; ++t) {
			uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
			uint32_t T2 = S0(a) + Maj(a, b, c);
			h = g;
			g = f;
			f = e;
			e = d + T1;
			d = c;
			c = b;
			b = a;
			a = T1 + T2;
		}
#undef Ch
#undef Maj
#undef S0
#undef S1
#undef R0
#undef R1
		/* Add the starting values of the context according to FIPS 180-2:6.2.2
		   step 4.  */
		a += a_save;
		b += b_save;
		c += c_save;
		d += d_save;
		e += e_save;
		f += f_save;
		g += g_save;
		h += h_save;

		/* Prepare for the next round.  */
		nwords -= 16;
	}

	/* Put checksum in context given as argument.  */
	ctx->H[0] = a;
	ctx->H[1] = b;
	ctx->H[2] = c;
	ctx->H[3] = d;
	ctx->H[4] = e;
	ctx->H[5] = f;
	ctx->H[6] = g;
	ctx->H[7] = h;
}

/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 128 == 0.  */
static void sha512_process_block(const void *buffer, size_t len, sha512_ctx_t *ctx)
{
	/* Constants for SHA512 from FIPS 180-2:4.2.3.  */
	static const uint64_t K[80] = {
		0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
		0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
		0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
		0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
		0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
		0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
		0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
		0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
		0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
		0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
		0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
		0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
		0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
		0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
		0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
		0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
		0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
		0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
		0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
		0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
		0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
		0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
		0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
		0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
		0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
		0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
		0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
		0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
		0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
		0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
		0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
		0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
		0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
		0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
		0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
		0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
		0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
		0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
		0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
		0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
	};
	const uint64_t *words = buffer;
	size_t nwords = len / sizeof(uint64_t);
	uint64_t a = ctx->H[0];
	uint64_t b = ctx->H[1];
	uint64_t c = ctx->H[2];
	uint64_t d = ctx->H[3];
	uint64_t e = ctx->H[4];
	uint64_t f = ctx->H[5];
	uint64_t g = ctx->H[6];
	uint64_t h = ctx->H[7];

	/* First increment the byte count.  FIPS 180-2 specifies the possible
	   length of the file up to 2^128 bits.  Here we only compute the
	   number of bytes.  Do a double word increment.  */
	ctx->total[0] += len;
	if (ctx->total[0] < len)
		ctx->total[1]++;

	/* Process all bytes in the buffer with 128 bytes in each round of
	   the loop.  */
	while (nwords > 0) {
		uint64_t W[80];
		uint64_t a_save = a;
		uint64_t b_save = b;
		uint64_t c_save = c;
		uint64_t d_save = d;
		uint64_t e_save = e;
		uint64_t f_save = f;
		uint64_t g_save = g;
		uint64_t h_save = h;

		/* Operators defined in FIPS 180-2:4.1.2.  */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))

		/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2.  */
		for (unsigned t = 0; t < 16; ++t) {
			W[t] = ntoh64(*words);
			++words;
		}
		for (unsigned t = 16; t < 80; ++t)
			W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];

		/* The actual computation according to FIPS 180-2:6.3.2 step 3.  */
		for (unsigned t = 0; t < 80; ++t) {
			uint64_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
			uint64_t T2 = S0(a) + Maj(a, b, c);
			h = g;
			g = f;
			f = e;
			e = d + T1;
			d = c;
			c = b;
			b = a;
			a = T1 + T2;
		}
#undef Ch
#undef Maj
#undef S0
#undef S1
#undef R0
#undef R1
		/* Add the starting values of the context according to FIPS 180-2:6.3.2
		   step 4.  */
		a += a_save;
		b += b_save;
		c += c_save;
		d += d_save;
		e += e_save;
		f += f_save;
		g += g_save;
		h += h_save;

		/* Prepare for the next round.  */
		nwords -= 16;
	}

	/* Put checksum in context given as argument.  */
	ctx->H[0] = a;
	ctx->H[1] = b;
	ctx->H[2] = c;
	ctx->H[3] = d;
	ctx->H[4] = e;
	ctx->H[5] = f;
	ctx->H[6] = g;
	ctx->H[7] = h;
}


void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
{
	ctx->count[0] = ctx->count[1] = 0;
	ctx->hash[0] = 0x67452301;
	ctx->hash[1] = 0xefcdab89;
	ctx->hash[2] = 0x98badcfe;
	ctx->hash[3] = 0x10325476;
	ctx->hash[4] = 0xc3d2e1f0;
}

/* Initialize structure containing state of computation.
   (FIPS 180-2:5.3.2)  */
void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
{
	ctx->H[0] = 0x6a09e667;
	ctx->H[1] = 0xbb67ae85;
	ctx->H[2] = 0x3c6ef372;
	ctx->H[3] = 0xa54ff53a;
	ctx->H[4] = 0x510e527f;
	ctx->H[5] = 0x9b05688c;
	ctx->H[6] = 0x1f83d9ab;
	ctx->H[7] = 0x5be0cd19;
	ctx->total[0] = ctx->total[1] = 0;
	ctx->buflen = 0;
}

/* Initialize structure containing state of computation.
   (FIPS 180-2:5.3.3)  */
void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
{
	ctx->H[0] = 0x6a09e667f3bcc908ULL;
	ctx->H[1] = 0xbb67ae8584caa73bULL;
	ctx->H[2] = 0x3c6ef372fe94f82bULL;
	ctx->H[3] = 0xa54ff53a5f1d36f1ULL;
	ctx->H[4] = 0x510e527fade682d1ULL;
	ctx->H[5] = 0x9b05688c2b3e6c1fULL;
	ctx->H[6] = 0x1f83d9abfb41bd6bULL;
	ctx->H[7] = 0x5be0cd19137e2179ULL;
	ctx->total[0] = ctx->total[1] = 0;
	ctx->buflen = 0;
}


/* SHA1 hash data in an array of bytes into hash buffer and call the        */
/* hash_compile function as required.                                       */
void FAST_FUNC sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx)
{
	uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
	uint32_t freeb = SHA1_BLOCK_SIZE - pos;
	const unsigned char *sp = data;

	ctx->count[0] += length;
	if (ctx->count[0] < length)
		ctx->count[1]++;

	while (length >= freeb) {	/* transfer whole blocks while possible  */
		memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
		sp += freeb;
		length -= freeb;
		freeb = SHA1_BLOCK_SIZE;
		pos = 0;
		sha1_compile(ctx);
	}

	memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length);
}

void FAST_FUNC sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx)
{
	/* When we already have some bits in our internal buffer concatenate
	   both inputs first.  */
	if (ctx->buflen != 0) {
		size_t left_over = ctx->buflen;
		size_t add = 128 - left_over > len ? len : 128 - left_over;

		memcpy(&ctx->buffer[left_over], buffer, add);
		ctx->buflen += add;

		if (ctx->buflen > 64) {
			sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx);

			ctx->buflen &= 63;
			/* The regions in the following copy operation cannot overlap.  */
			memcpy(ctx->buffer,
			       &ctx->buffer[(left_over + add) & ~63],
			       ctx->buflen);
		}

		buffer = (const char *)buffer + add;
		len -= add;
	}

	/* Process available complete blocks.  */
	if (len >= 64) {
		if (UNALIGNED_P(buffer, uint32_t)) {
			while (len > 64) {
				sha256_process_block(memcpy(ctx->buffer, buffer, 64),
						     64, ctx);
				buffer = (const char *)buffer + 64;
				len -= 64;
			}
		} else {
			sha256_process_block(buffer, len & ~63, ctx);
			buffer = (const char *)buffer + (len & ~63);
			len &= 63;
		}
	}

	/* Move remaining bytes into internal buffer.  */
	if (len > 0) {
		size_t left_over = ctx->buflen;

		memcpy(&ctx->buffer[left_over], buffer, len);
		left_over += len;
		if (left_over >= 64) {
			sha256_process_block(ctx->buffer, 64, ctx);
			left_over -= 64;
			memcpy(ctx->buffer, &ctx->buffer[64], left_over);
		}
		ctx->buflen = left_over;
	}
}

void FAST_FUNC sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx)
{
	/* When we already have some bits in our internal buffer concatenate
	   both inputs first.  */
	if (ctx->buflen != 0) {
		size_t left_over = ctx->buflen;
		size_t add = 256 - left_over > len ? len : 256 - left_over;

		memcpy(&ctx->buffer[left_over], buffer, add);
		ctx->buflen += add;

		if (ctx->buflen > 128) {
			sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx);

			ctx->buflen &= 127;
			/* The regions in the following copy operation cannot overlap.  */
			memcpy(ctx->buffer,
			       &ctx->buffer[(left_over + add) & ~127],
			       ctx->buflen);
		}

		buffer = (const char *)buffer + add;
		len -= add;
	}

	/* Process available complete blocks.  */
	if (len >= 128) {
// #if BB_ARCH_REQUIRES_ALIGNMENT
		if (UNALIGNED_P(buffer, uint64_t)) {
			while (len > 128) {
				sha512_process_block(memcpy(ctx->buffer, buffer, 128),
						     128, ctx);
				buffer = (const char *)buffer + 128;
				len -= 128;
			}
		} else
// #endif
		{
			sha512_process_block(buffer, len & ~127, ctx);
			buffer = (const char *)buffer + (len & ~127);
			len &= 127;
		}
	}

	/* Move remaining bytes into internal buffer.  */
	if (len > 0) {
		size_t left_over = ctx->buflen;

		memcpy(&ctx->buffer[left_over], buffer, len);
		left_over += len;
		if (left_over >= 128) {
			sha512_process_block(ctx->buffer, 128, ctx);
			left_over -= 128;
			memcpy(ctx->buffer, &ctx->buffer[128], left_over);
		}
		ctx->buflen = left_over;
	}
}


void FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx)
{
	/* SHA1 Final padding and digest calculation  */
#if BB_BIG_ENDIAN
	static const uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
	static const uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
#else
	static const uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
	static const uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
#endif

	uint8_t *hval = resbuf;
	uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);

	/* mask out the rest of any partial 32-bit word and then set    */
	/* the next byte to 0x80. On big-endian machines any bytes in   */
	/* the buffer will be at the top end of 32 bit words, on little */
	/* endian machines they will be at the bottom. Hence the AND    */
	/* and OR masks above are reversed for little endian systems    */
	ctx->wbuf[cnt >> 2] =
		(ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];

	/* we need 9 or more empty positions, one for the padding byte  */
	/* (above) and eight for the length count.  If there is not     */
	/* enough space pad and empty the buffer                        */
	if (cnt > SHA1_BLOCK_SIZE - 9) {
		if (cnt < 60)
			ctx->wbuf[15] = 0;
		sha1_compile(ctx);
		cnt = 0;
	} else  /* compute a word index for the empty buffer positions */
		cnt = (cnt >> 2) + 1;

	while (cnt < 14)  /* and zero pad all but last two positions */
		ctx->wbuf[cnt++] = 0;

	/* assemble the eight byte counter in the buffer in big-endian  */
	/* format					                */
	ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29));
	ctx->wbuf[15] = htonl(ctx->count[0] << 3);

	sha1_compile(ctx);

	/* extract the hash value as bytes in case the hash buffer is   */
	/* misaligned for 32-bit words                                  */
	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
		hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
}


/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32 bits value.  */
void FAST_FUNC sha256_end(void *resbuf, sha256_ctx_t *ctx)
{
	/* Take yet unprocessed bytes into account.  */
	uint32_t bytes = ctx->buflen;
	size_t pad;

	/* Now count remaining bytes.  */
	ctx->total[0] += bytes;
	if (ctx->total[0] < bytes)
		ctx->total[1]++;

	/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0...
	   (FIPS 180-2:5.1.1)  */
	pad = (bytes >= 56 ? 64 + 56 - bytes : 56 - bytes);
	memset(&ctx->buffer[bytes], 0, pad);
	ctx->buffer[bytes] = 0x80;

	/* Put the 64-bit file length in *bits* at the end of the buffer.  */
	*(uint32_t *) &ctx->buffer[bytes + pad + 4] = ntohl(ctx->total[0] << 3);
	*(uint32_t *) &ctx->buffer[bytes + pad] = ntohl((ctx->total[1] << 3) | (ctx->total[0] >> 29));

	/* Process last bytes.  */
	sha256_process_block(ctx->buffer, bytes + pad + 8, ctx);

	/* Put result from CTX in first 32 bytes following RESBUF.  */
	for (unsigned i = 0; i < 8; ++i)
		((uint32_t *) resbuf)[i] = ntohl(ctx->H[i]);
}

/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 64 bits value.  */
void FAST_FUNC sha512_end(void *resbuf, sha512_ctx_t *ctx)
{
	/* Take yet unprocessed bytes into account.  */
	uint64_t bytes = ctx->buflen;
	size_t pad;

	/* Now count remaining bytes.  */
	ctx->total[0] += bytes;
	if (ctx->total[0] < bytes)
		ctx->total[1]++;

	/* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0...
	   (FIPS 180-2:5.1.2)  */
	pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
	memset(&ctx->buffer[bytes], 0, pad);
	ctx->buffer[bytes] = 0x80;

	/* Put the 128-bit file length in *bits* at the end of the buffer.  */
	*(uint64_t *) &ctx->buffer[bytes + pad + 8] = hton64(ctx->total[0] << 3);
	*(uint64_t *) &ctx->buffer[bytes + pad] = hton64((ctx->total[1] << 3) | (ctx->total[0] >> 61));

	/* Process last bytes.  */
	sha512_process_block(ctx->buffer, bytes + pad + 16, ctx);

	/* Put result from CTX in first 64 bytes following RESBUF.  */
	for (unsigned i = 0; i < 8; ++i)
		((uint64_t *) resbuf)[i] = hton64(ctx->H[i]);
}