aboutsummaryrefslogtreecommitdiff
path: root/lib/libcrypto
diff options
context:
space:
mode:
authorCem Keylan <cem@ckyln.com>2020-10-16 17:41:25 +0300
committerCem Keylan <cem@ckyln.com>2020-10-16 17:41:25 +0300
commite2abcdca396661cbe0ae2ddb13d5c2b85682c13a (patch)
treeacf9b5c80b645617f882c45224c6e07251711842 /lib/libcrypto
downloadotools-e2abcdca396661cbe0ae2ddb13d5c2b85682c13a.tar.gz
initial commit
Diffstat (limited to 'lib/libcrypto')
-rw-r--r--lib/libcrypto/arc4random/arc4random_linux.h88
-rw-r--r--lib/libcrypto/md32_common.h345
-rw-r--r--lib/libcrypto/sha/sha256.c284
-rw-r--r--lib/libcrypto/sha/sha512.c547
4 files changed, 1264 insertions, 0 deletions
diff --git a/lib/libcrypto/arc4random/arc4random_linux.h b/lib/libcrypto/arc4random/arc4random_linux.h
new file mode 100644
index 0000000..5e1cf34
--- /dev/null
+++ b/lib/libcrypto/arc4random/arc4random_linux.h
@@ -0,0 +1,88 @@
+/* $OpenBSD: arc4random_linux.h,v 1.12 2019/07/11 10:37:28 inoguchi Exp $ */
+
+/*
+ * Copyright (c) 1996, David Mazieres <dm@uun.org>
+ * Copyright (c) 2008, Damien Miller <djm@openbsd.org>
+ * Copyright (c) 2013, Markus Friedl <markus@openbsd.org>
+ * Copyright (c) 2014, Theo de Raadt <deraadt@openbsd.org>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/*
+ * Stub functions for portability.
+ */
+
+#include <sys/mman.h>
+
+#include <pthread.h>
+#include <signal.h>
+
+static pthread_mutex_t arc4random_mtx = PTHREAD_MUTEX_INITIALIZER;
+#define _ARC4_LOCK() pthread_mutex_lock(&arc4random_mtx)
+#define _ARC4_UNLOCK() pthread_mutex_unlock(&arc4random_mtx)
+
+#if defined(__GLIBC__) && !(defined(__UCLIBC__) && !defined(__ARCH_USE_MMU__))
+extern void *__dso_handle;
+extern int __register_atfork(void (*)(void), void(*)(void), void (*)(void), void *);
+#define _ARC4_ATFORK(f) __register_atfork(NULL, NULL, (f), __dso_handle)
+#else
+#define _ARC4_ATFORK(f) pthread_atfork(NULL, NULL, (f))
+#endif
+
+static inline void
+_getentropy_fail(void)
+{
+ raise(SIGKILL);
+}
+
+static volatile sig_atomic_t _rs_forked;
+
+static inline void
+_rs_forkhandler(void)
+{
+ _rs_forked = 1;
+}
+
+static inline void
+_rs_forkdetect(void)
+{
+ static pid_t _rs_pid = 0;
+ pid_t pid = getpid();
+
+ /* XXX unusual calls to clone() can bypass checks */
+ if (_rs_pid == 0 || _rs_pid == 1 || _rs_pid != pid || _rs_forked) {
+ _rs_pid = pid;
+ _rs_forked = 0;
+ if (rs)
+ memset(rs, 0, sizeof(*rs));
+ }
+}
+
+static inline int
+_rs_allocate(struct _rs **rsp, struct _rsx **rsxp)
+{
+ if ((*rsp = mmap(NULL, sizeof(**rsp), PROT_READ|PROT_WRITE,
+ MAP_ANON|MAP_PRIVATE, -1, 0)) == MAP_FAILED)
+ return (-1);
+
+ if ((*rsxp = mmap(NULL, sizeof(**rsxp), PROT_READ|PROT_WRITE,
+ MAP_ANON|MAP_PRIVATE, -1, 0)) == MAP_FAILED) {
+ munmap(*rsp, sizeof(**rsp));
+ *rsp = NULL;
+ return (-1);
+ }
+
+ _ARC4_ATFORK(_rs_forkhandler);
+ return (0);
+}
diff --git a/lib/libcrypto/md32_common.h b/lib/libcrypto/md32_common.h
new file mode 100644
index 0000000..0dca617
--- /dev/null
+++ b/lib/libcrypto/md32_common.h
@@ -0,0 +1,345 @@
+/* $OpenBSD: md32_common.h,v 1.22 2016/11/04 13:56:04 miod Exp $ */
+/* ====================================================================
+ * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * 3. All advertising materials mentioning features or use of this
+ * software must display the following acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
+ *
+ * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+ * endorse or promote products derived from this software without
+ * prior written permission. For written permission, please contact
+ * licensing@OpenSSL.org.
+ *
+ * 5. Products derived from this software may not be called "OpenSSL"
+ * nor may "OpenSSL" appear in their names without prior written
+ * permission of the OpenSSL Project.
+ *
+ * 6. Redistributions of any form whatsoever must retain the following
+ * acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ====================================================================
+ *
+ */
+
+/*
+ * This is a generic 32 bit "collector" for message digest algorithms.
+ * Whenever needed it collects input character stream into chunks of
+ * 32 bit values and invokes a block function that performs actual hash
+ * calculations.
+ *
+ * Porting guide.
+ *
+ * Obligatory macros:
+ *
+ * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
+ * this macro defines byte order of input stream.
+ * HASH_CBLOCK
+ * size of a unit chunk HASH_BLOCK operates on.
+ * HASH_LONG
+ * has to be at least 32 bit wide.
+ * HASH_CTX
+ * context structure that at least contains following
+ * members:
+ * typedef struct {
+ * ...
+ * HASH_LONG Nl,Nh;
+ * either {
+ * HASH_LONG data[HASH_LBLOCK];
+ * unsigned char data[HASH_CBLOCK];
+ * };
+ * unsigned int num;
+ * ...
+ * } HASH_CTX;
+ * data[] vector is expected to be zeroed upon first call to
+ * HASH_UPDATE.
+ * HASH_UPDATE
+ * name of "Update" function, implemented here.
+ * HASH_TRANSFORM
+ * name of "Transform" function, implemented here.
+ * HASH_FINAL
+ * name of "Final" function, implemented here.
+ * HASH_BLOCK_DATA_ORDER
+ * name of "block" function capable of treating *unaligned* input
+ * message in original (data) byte order, implemented externally.
+ * HASH_MAKE_STRING
+ * macro convering context variables to an ASCII hash string.
+ *
+ * MD5 example:
+ *
+ * #define DATA_ORDER_IS_LITTLE_ENDIAN
+ *
+ * #define HASH_LONG MD5_LONG
+ * #define HASH_CTX MD5_CTX
+ * #define HASH_CBLOCK MD5_CBLOCK
+ * #define HASH_UPDATE MD5_Update
+ * #define HASH_TRANSFORM MD5_Transform
+ * #define HASH_FINAL MD5_Final
+ * #define HASH_BLOCK_DATA_ORDER md5_block_data_order
+ *
+ * <appro@fy.chalmers.se>
+ */
+
+#include <stdint.h>
+
+#include <openssl/opensslconf.h>
+
+#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
+#error "DATA_ORDER must be defined!"
+#endif
+
+#ifndef HASH_CBLOCK
+#error "HASH_CBLOCK must be defined!"
+#endif
+#ifndef HASH_LONG
+#error "HASH_LONG must be defined!"
+#endif
+#ifndef HASH_CTX
+#error "HASH_CTX must be defined!"
+#endif
+
+#ifndef HASH_UPDATE
+#error "HASH_UPDATE must be defined!"
+#endif
+#ifndef HASH_TRANSFORM
+#error "HASH_TRANSFORM must be defined!"
+#endif
+#if !defined(HASH_FINAL) && !defined(HASH_NO_FINAL)
+#error "HASH_FINAL or HASH_NO_FINAL must be defined!"
+#endif
+
+#ifndef HASH_BLOCK_DATA_ORDER
+#error "HASH_BLOCK_DATA_ORDER must be defined!"
+#endif
+
+/*
+ * This common idiom is recognized by the compiler and turned into a
+ * CPU-specific intrinsic as appropriate.
+ * e.g. GCC optimizes to roll on amd64 at -O0
+ */
+static inline uint32_t ROTATE(uint32_t a, uint32_t n)
+{
+ return (a<<n)|(a>>(32-n));
+}
+
+#if defined(DATA_ORDER_IS_BIG_ENDIAN)
+
+#if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
+# if (defined(__i386) || defined(__i386__) || \
+ defined(__x86_64) || defined(__x86_64__))
+ /*
+ * This gives ~30-40% performance improvement in SHA-256 compiled
+ * with gcc [on P4]. Well, first macro to be frank. We can pull
+ * this trick on x86* platforms only, because these CPUs can fetch
+ * unaligned data without raising an exception.
+ */
+# define HOST_c2l(c,l) ({ unsigned int r=*((const unsigned int *)(c)); \
+ asm ("bswapl %0":"=r"(r):"0"(r)); \
+ (c)+=4; (l)=r; })
+# define HOST_l2c(l,c) ({ unsigned int r=(l); \
+ asm ("bswapl %0":"=r"(r):"0"(r)); \
+ *((unsigned int *)(c))=r; (c)+=4; })
+# endif
+#endif
+
+#ifndef HOST_c2l
+#define HOST_c2l(c,l) do {l =(((unsigned long)(*((c)++)))<<24); \
+ l|=(((unsigned long)(*((c)++)))<<16); \
+ l|=(((unsigned long)(*((c)++)))<< 8); \
+ l|=(((unsigned long)(*((c)++))) ); \
+ } while (0)
+#endif
+#ifndef HOST_l2c
+#define HOST_l2c(l,c) do {*((c)++)=(unsigned char)(((l)>>24)&0xff); \
+ *((c)++)=(unsigned char)(((l)>>16)&0xff); \
+ *((c)++)=(unsigned char)(((l)>> 8)&0xff); \
+ *((c)++)=(unsigned char)(((l) )&0xff); \
+ } while (0)
+#endif
+
+#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
+
+#if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
+# define HOST_c2l(c,l) ((l)=*((const unsigned int *)(c)), (c)+=4)
+# define HOST_l2c(l,c) (*((unsigned int *)(c))=(l), (c)+=4)
+#endif
+
+#ifndef HOST_c2l
+#define HOST_c2l(c,l) do {l =(((unsigned long)(*((c)++))) ); \
+ l|=(((unsigned long)(*((c)++)))<< 8); \
+ l|=(((unsigned long)(*((c)++)))<<16); \
+ l|=(((unsigned long)(*((c)++)))<<24); \
+ } while (0)
+#endif
+#ifndef HOST_l2c
+#define HOST_l2c(l,c) do {*((c)++)=(unsigned char)(((l) )&0xff); \
+ *((c)++)=(unsigned char)(((l)>> 8)&0xff); \
+ *((c)++)=(unsigned char)(((l)>>16)&0xff); \
+ *((c)++)=(unsigned char)(((l)>>24)&0xff); \
+ } while (0)
+#endif
+
+#endif
+
+/*
+ * Time for some action:-)
+ */
+
+int
+HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len)
+{
+ const unsigned char *data = data_;
+ unsigned char *p;
+ HASH_LONG l;
+ size_t n;
+
+ if (len == 0)
+ return 1;
+
+ l = (c->Nl + (((HASH_LONG)len) << 3))&0xffffffffUL;
+ /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
+ * Wei Dai <weidai@eskimo.com> for pointing it out. */
+ if (l < c->Nl) /* overflow */
+ c->Nh++;
+ c->Nh+=(HASH_LONG)(len>>29); /* might cause compiler warning on 16-bit */
+ c->Nl = l;
+
+ n = c->num;
+ if (n != 0) {
+ p = (unsigned char *)c->data;
+
+ if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
+ memcpy (p + n, data, HASH_CBLOCK - n);
+ HASH_BLOCK_DATA_ORDER (c, p, 1);
+ n = HASH_CBLOCK - n;
+ data += n;
+ len -= n;
+ c->num = 0;
+ memset (p,0,HASH_CBLOCK); /* keep it zeroed */
+ } else {
+ memcpy (p + n, data, len);
+ c->num += (unsigned int)len;
+ return 1;
+ }
+ }
+
+ n = len/HASH_CBLOCK;
+ if (n > 0) {
+ HASH_BLOCK_DATA_ORDER (c, data, n);
+ n *= HASH_CBLOCK;
+ data += n;
+ len -= n;
+ }
+
+ if (len != 0) {
+ p = (unsigned char *)c->data;
+ c->num = (unsigned int)len;
+ memcpy (p, data, len);
+ }
+ return 1;
+}
+
+
+void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
+{
+ HASH_BLOCK_DATA_ORDER (c, data, 1);
+}
+
+
+#ifndef HASH_NO_FINAL
+int HASH_FINAL (unsigned char *md, HASH_CTX *c)
+{
+ unsigned char *p = (unsigned char *)c->data;
+ size_t n = c->num;
+
+ p[n] = 0x80; /* there is always room for one */
+ n++;
+
+ if (n > (HASH_CBLOCK - 8)) {
+ memset (p + n, 0, HASH_CBLOCK - n);
+ n = 0;
+ HASH_BLOCK_DATA_ORDER (c, p, 1);
+ }
+ memset (p + n, 0, HASH_CBLOCK - 8 - n);
+
+ p += HASH_CBLOCK - 8;
+#if defined(DATA_ORDER_IS_BIG_ENDIAN)
+ HOST_l2c(c->Nh, p);
+ HOST_l2c(c->Nl, p);
+#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
+ HOST_l2c(c->Nl, p);
+ HOST_l2c(c->Nh, p);
+#endif
+ p -= HASH_CBLOCK;
+ HASH_BLOCK_DATA_ORDER (c, p, 1);
+ c->num = 0;
+ memset (p, 0, HASH_CBLOCK);
+
+#ifndef HASH_MAKE_STRING
+#error "HASH_MAKE_STRING must be defined!"
+#else
+ HASH_MAKE_STRING(c, md);
+#endif
+
+ return 1;
+}
+#endif
+
+#ifndef MD32_REG_T
+#if defined(__alpha) || defined(__sparcv9) || defined(__mips)
+#define MD32_REG_T long
+/*
+ * This comment was originaly written for MD5, which is why it
+ * discusses A-D. But it basically applies to all 32-bit digests,
+ * which is why it was moved to common header file.
+ *
+ * In case you wonder why A-D are declared as long and not
+ * as MD5_LONG. Doing so results in slight performance
+ * boost on LP64 architectures. The catch is we don't
+ * really care if 32 MSBs of a 64-bit register get polluted
+ * with eventual overflows as we *save* only 32 LSBs in
+ * *either* case. Now declaring 'em long excuses the compiler
+ * from keeping 32 MSBs zeroed resulting in 13% performance
+ * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
+ * Well, to be honest it should say that this *prevents*
+ * performance degradation.
+ * <appro@fy.chalmers.se>
+ */
+#else
+/*
+ * Above is not absolute and there are LP64 compilers that
+ * generate better code if MD32_REG_T is defined int. The above
+ * pre-processor condition reflects the circumstances under which
+ * the conclusion was made and is subject to further extension.
+ * <appro@fy.chalmers.se>
+ */
+#define MD32_REG_T int
+#endif
+#endif
diff --git a/lib/libcrypto/sha/sha256.c b/lib/libcrypto/sha/sha256.c
new file mode 100644
index 0000000..9c05d3b
--- /dev/null
+++ b/lib/libcrypto/sha/sha256.c
@@ -0,0 +1,284 @@
+/* $OpenBSD: sha256.c,v 1.10 2019/01/21 23:20:31 jsg Exp $ */
+/* ====================================================================
+ * Copyright (c) 2004 The OpenSSL Project. All rights reserved
+ * according to the OpenSSL license [found in ../../LICENSE].
+ * ====================================================================
+ */
+
+#include <openssl/opensslconf.h>
+
+#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
+
+#include <machine/endian.h>
+
+#include <stdlib.h>
+#include <string.h>
+
+#include <openssl/crypto.h>
+#include <openssl/sha.h>
+#include <openssl/opensslv.h>
+
+int SHA224_Init(SHA256_CTX *c)
+ {
+ memset (c,0,sizeof(*c));
+ c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
+ c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
+ c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
+ c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
+ c->md_len=SHA224_DIGEST_LENGTH;
+ return 1;
+ }
+
+int SHA256_Init(SHA256_CTX *c)
+ {
+ memset (c,0,sizeof(*c));
+ c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
+ c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
+ c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
+ c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
+ c->md_len=SHA256_DIGEST_LENGTH;
+ return 1;
+ }
+
+unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
+ {
+ SHA256_CTX c;
+ static unsigned char m[SHA224_DIGEST_LENGTH];
+
+ if (md == NULL) md=m;
+ SHA224_Init(&c);
+ SHA256_Update(&c,d,n);
+ SHA256_Final(md,&c);
+ explicit_bzero(&c,sizeof(c));
+ return(md);
+ }
+
+unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
+ {
+ SHA256_CTX c;
+ static unsigned char m[SHA256_DIGEST_LENGTH];
+
+ if (md == NULL) md=m;
+ SHA256_Init(&c);
+ SHA256_Update(&c,d,n);
+ SHA256_Final(md,&c);
+ explicit_bzero(&c,sizeof(c));
+ return(md);
+ }
+
+int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
+{ return SHA256_Update (c,data,len); }
+int SHA224_Final (unsigned char *md, SHA256_CTX *c)
+{ return SHA256_Final (md,c); }
+
+#define DATA_ORDER_IS_BIG_ENDIAN
+
+#define HASH_LONG SHA_LONG
+#define HASH_CTX SHA256_CTX
+#define HASH_CBLOCK SHA_CBLOCK
+/*
+ * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
+ * default: case below covers for it. It's not clear however if it's
+ * permitted to truncate to amount of bytes not divisible by 4. I bet not,
+ * but if it is, then default: case shall be extended. For reference.
+ * Idea behind separate cases for pre-defined lengths is to let the
+ * compiler decide if it's appropriate to unroll small loops.
+ */
+#define HASH_MAKE_STRING(c,s) do { \
+ unsigned long ll; \
+ unsigned int nn; \
+ switch ((c)->md_len) \
+ { case SHA224_DIGEST_LENGTH: \
+ for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
+ { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
+ break; \
+ case SHA256_DIGEST_LENGTH: \
+ for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
+ { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
+ break; \
+ default: \
+ if ((c)->md_len > SHA256_DIGEST_LENGTH) \
+ return 0; \
+ for (nn=0;nn<(c)->md_len/4;nn++) \
+ { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
+ break; \
+ } \
+ } while (0)
+
+#define HASH_UPDATE SHA256_Update
+#define HASH_TRANSFORM SHA256_Transform
+#define HASH_FINAL SHA256_Final
+#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
+#ifndef SHA256_ASM
+static
+#endif
+void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
+
+#include "md32_common.h"
+
+#ifndef SHA256_ASM
+static const SHA_LONG K256[64] = {
+ 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
+ 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
+ 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
+ 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
+ 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
+ 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
+ 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
+ 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
+ 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
+ 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
+ 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
+ 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
+ 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
+ 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
+ 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
+ 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
+
+/*
+ * FIPS specification refers to right rotations, while our ROTATE macro
+ * is left one. This is why you might notice that rotation coefficients
+ * differ from those observed in FIPS document by 32-N...
+ */
+#define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
+#define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
+#define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
+#define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
+
+#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
+#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+#ifdef OPENSSL_SMALL_FOOTPRINT
+
+static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
+ {
+ unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
+ SHA_LONG X[16],l;
+ int i;
+ const unsigned char *data=in;
+
+ while (num--) {
+
+ a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
+ e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
+
+ for (i=0;i<16;i++)
+ {
+ HOST_c2l(data,l); T1 = X[i] = l;
+ T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
+ T2 = Sigma0(a) + Maj(a,b,c);
+ h = g; g = f; f = e; e = d + T1;
+ d = c; c = b; b = a; a = T1 + T2;
+ }
+
+ for (;i<64;i++)
+ {
+ s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
+ s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
+
+ T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
+ T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
+ T2 = Sigma0(a) + Maj(a,b,c);
+ h = g; g = f; f = e; e = d + T1;
+ d = c; c = b; b = a; a = T1 + T2;
+ }
+
+ ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
+ ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
+
+ }
+}
+
+#else
+
+#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
+ T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
+ h = Sigma0(a) + Maj(a,b,c); \
+ d += T1; h += T1; } while (0)
+
+#define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
+ s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
+ s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
+ T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
+ ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
+
+static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
+ {
+ unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
+ SHA_LONG X[16];
+ int i;
+ const unsigned char *data=in;
+
+ while (num--) {
+
+ a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
+ e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
+
+ if (BYTE_ORDER != LITTLE_ENDIAN &&
+ sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
+ {
+ const SHA_LONG *W=(const SHA_LONG *)data;
+
+ T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
+ T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
+ T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
+ T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
+ T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
+ T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
+ T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
+ T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
+ T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
+ T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
+ T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
+ T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
+ T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
+ T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
+ T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
+ T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
+
+ data += SHA256_CBLOCK;
+ }
+ else
+ {
+ SHA_LONG l;
+
+ HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
+ HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
+ HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
+ HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
+ HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
+ HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
+ HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
+ HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
+ HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
+ HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
+ HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
+ HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
+ HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
+ HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
+ HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
+ HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
+ }
+
+ for (i=16;i<64;i+=8)
+ {
+ ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
+ ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
+ ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
+ ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
+ ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
+ ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
+ ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
+ ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
+ }
+
+ ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
+ ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
+
+ }
+ }
+
+#endif
+#endif /* SHA256_ASM */
+
+#endif /* OPENSSL_NO_SHA256 */
diff --git a/lib/libcrypto/sha/sha512.c b/lib/libcrypto/sha/sha512.c
new file mode 100644
index 0000000..6b95cfa
--- /dev/null
+++ b/lib/libcrypto/sha/sha512.c
@@ -0,0 +1,547 @@
+/* $OpenBSD: sha512.c,v 1.15 2016/11/04 13:56:05 miod Exp $ */
+/* ====================================================================
+ * Copyright (c) 2004 The OpenSSL Project. All rights reserved
+ * according to the OpenSSL license [found in ../../LICENSE].
+ * ====================================================================
+ */
+
+#include <machine/endian.h>
+
+#include <stdlib.h>
+#include <string.h>
+
+#include <openssl/opensslconf.h>
+
+#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
+/*
+ * IMPLEMENTATION NOTES.
+ *
+ * As you might have noticed 32-bit hash algorithms:
+ *
+ * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
+ * - optimized versions implement two transform functions: one operating
+ * on [aligned] data in host byte order and one - on data in input
+ * stream byte order;
+ * - share common byte-order neutral collector and padding function
+ * implementations, ../md32_common.h;
+ *
+ * Neither of the above applies to this SHA-512 implementations. Reasons
+ * [in reverse order] are:
+ *
+ * - it's the only 64-bit hash algorithm for the moment of this writing,
+ * there is no need for common collector/padding implementation [yet];
+ * - by supporting only one transform function [which operates on
+ * *aligned* data in input stream byte order, big-endian in this case]
+ * we minimize burden of maintenance in two ways: a) collector/padding
+ * function is simpler; b) only one transform function to stare at;
+ * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
+ * apply a number of optimizations to mitigate potential performance
+ * penalties caused by previous design decision;
+ *
+ * Caveat lector.
+ *
+ * Implementation relies on the fact that "long long" is 64-bit on
+ * both 32- and 64-bit platforms. If some compiler vendor comes up
+ * with 128-bit long long, adjustment to sha.h would be required.
+ * As this implementation relies on 64-bit integer type, it's totally
+ * inappropriate for platforms which don't support it, most notably
+ * 16-bit platforms.
+ * <appro@fy.chalmers.se>
+ */
+
+#include <openssl/crypto.h>
+#include <openssl/opensslv.h>
+#include <openssl/sha.h>
+
+#if !defined(__STRICT_ALIGNMENT) || defined(SHA512_ASM)
+#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
+#endif
+
+int SHA384_Init(SHA512_CTX *c)
+ {
+ c->h[0]=U64(0xcbbb9d5dc1059ed8);
+ c->h[1]=U64(0x629a292a367cd507);
+ c->h[2]=U64(0x9159015a3070dd17);
+ c->h[3]=U64(0x152fecd8f70e5939);
+ c->h[4]=U64(0x67332667ffc00b31);
+ c->h[5]=U64(0x8eb44a8768581511);
+ c->h[6]=U64(0xdb0c2e0d64f98fa7);
+ c->h[7]=U64(0x47b5481dbefa4fa4);
+
+ c->Nl=0; c->Nh=0;
+ c->num=0; c->md_len=SHA384_DIGEST_LENGTH;
+ return 1;
+ }
+
+int SHA512_Init(SHA512_CTX *c)
+ {
+ c->h[0]=U64(0x6a09e667f3bcc908);
+ c->h[1]=U64(0xbb67ae8584caa73b);
+ c->h[2]=U64(0x3c6ef372fe94f82b);
+ c->h[3]=U64(0xa54ff53a5f1d36f1);
+ c->h[4]=U64(0x510e527fade682d1);
+ c->h[5]=U64(0x9b05688c2b3e6c1f);
+ c->h[6]=U64(0x1f83d9abfb41bd6b);
+ c->h[7]=U64(0x5be0cd19137e2179);
+
+ c->Nl=0; c->Nh=0;
+ c->num=0; c->md_len=SHA512_DIGEST_LENGTH;
+ return 1;
+ }
+
+#ifndef SHA512_ASM
+static
+#endif
+void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
+
+int SHA512_Final (unsigned char *md, SHA512_CTX *c)
+ {
+ unsigned char *p=(unsigned char *)c->u.p;
+ size_t n=c->num;
+
+ p[n]=0x80; /* There always is a room for one */
+ n++;
+ if (n > (sizeof(c->u)-16))
+ memset (p+n,0,sizeof(c->u)-n), n=0,
+ sha512_block_data_order (c,p,1);
+
+ memset (p+n,0,sizeof(c->u)-16-n);
+#if BYTE_ORDER == BIG_ENDIAN
+ c->u.d[SHA_LBLOCK-2] = c->Nh;
+ c->u.d[SHA_LBLOCK-1] = c->Nl;
+#else
+ p[sizeof(c->u)-1] = (unsigned char)(c->Nl);
+ p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8);
+ p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16);
+ p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24);
+ p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32);
+ p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40);
+ p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48);
+ p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56);
+ p[sizeof(c->u)-9] = (unsigned char)(c->Nh);
+ p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
+ p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
+ p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
+ p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
+ p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
+ p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
+ p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
+#endif
+
+ sha512_block_data_order (c,p,1);
+
+ if (md==0) return 0;
+
+ switch (c->md_len)
+ {
+ /* Let compiler decide if it's appropriate to unroll... */
+ case SHA384_DIGEST_LENGTH:
+ for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
+ {
+ SHA_LONG64 t = c->h[n];
+
+ *(md++) = (unsigned char)(t>>56);
+ *(md++) = (unsigned char)(t>>48);
+ *(md++) = (unsigned char)(t>>40);
+ *(md++) = (unsigned char)(t>>32);
+ *(md++) = (unsigned char)(t>>24);
+ *(md++) = (unsigned char)(t>>16);
+ *(md++) = (unsigned char)(t>>8);
+ *(md++) = (unsigned char)(t);
+ }
+ break;
+ case SHA512_DIGEST_LENGTH:
+ for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
+ {
+ SHA_LONG64 t = c->h[n];
+
+ *(md++) = (unsigned char)(t>>56);
+ *(md++) = (unsigned char)(t>>48);
+ *(md++) = (unsigned char)(t>>40);
+ *(md++) = (unsigned char)(t>>32);
+ *(md++) = (unsigned char)(t>>24);
+ *(md++) = (unsigned char)(t>>16);
+ *(md++) = (unsigned char)(t>>8);
+ *(md++) = (unsigned char)(t);
+ }
+ break;
+ /* ... as well as make sure md_len is not abused. */
+ default: return 0;
+ }
+
+ return 1;
+ }
+
+int SHA384_Final (unsigned char *md,SHA512_CTX *c)
+{ return SHA512_Final (md,c); }
+
+int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
+ {
+ SHA_LONG64 l;
+ unsigned char *p=c->u.p;
+ const unsigned char *data=(const unsigned char *)_data;
+
+ if (len==0) return 1;
+
+ l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
+ if (l < c->Nl) c->Nh++;
+ if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
+ c->Nl=l;
+
+ if (c->num != 0)
+ {
+ size_t n = sizeof(c->u) - c->num;
+
+ if (len < n)
+ {
+ memcpy (p+c->num,data,len), c->num += (unsigned int)len;
+ return 1;
+ }
+ else {
+ memcpy (p+c->num,data,n), c->num = 0;
+ len-=n, data+=n;
+ sha512_block_data_order (c,p,1);
+ }
+ }
+
+ if (len >= sizeof(c->u))
+ {
+#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
+ if ((size_t)data%sizeof(c->u.d[0]) != 0)
+ while (len >= sizeof(c->u))
+ memcpy (p,data,sizeof(c->u)),
+ sha512_block_data_order (c,p,1),
+ len -= sizeof(c->u),
+ data += sizeof(c->u);
+ else
+#endif
+ sha512_block_data_order (c,data,len/sizeof(c->u)),
+ data += len,
+ len %= sizeof(c->u),
+ data -= len;
+ }
+
+ if (len != 0) memcpy (p,data,len), c->num = (int)len;
+
+ return 1;
+ }
+
+int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
+{ return SHA512_Update (c,data,len); }
+
+void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
+ {
+#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
+ if ((size_t)data%sizeof(c->u.d[0]) != 0)
+ memcpy(c->u.p,data,sizeof(c->u.p)),
+ data = c->u.p;
+#endif
+ sha512_block_data_order (c,data,1);
+ }
+
+unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
+ {
+ SHA512_CTX c;
+ static unsigned char m[SHA384_DIGEST_LENGTH];
+
+ if (md == NULL) md=m;
+ SHA384_Init(&c);
+ SHA512_Update(&c,d,n);
+ SHA512_Final(md,&c);
+ explicit_bzero(&c,sizeof(c));
+ return(md);
+ }
+
+unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
+ {
+ SHA512_CTX c;
+ static unsigned char m[SHA512_DIGEST_LENGTH];
+
+ if (md == NULL) md=m;
+ SHA512_Init(&c);
+ SHA512_Update(&c,d,n);
+ SHA512_Final(md,&c);
+ explicit_bzero(&c,sizeof(c));
+ return(md);
+ }
+
+#ifndef SHA512_ASM
+static const SHA_LONG64 K512[80] = {
+ U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
+ U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
+ U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
+ U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
+ U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
+ U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
+ U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
+ U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
+ U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
+ U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
+ U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
+ U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
+ U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
+ U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
+ U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
+ U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
+ U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
+ U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
+ U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
+ U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
+ U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
+ U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
+ U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
+ U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
+ U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
+ U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
+ U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
+ U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
+ U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
+ U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
+ U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
+ U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
+ U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
+ U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
+ U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
+ U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
+ U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
+ U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
+ U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
+ U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
+
+#if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
+# if defined(__x86_64) || defined(__x86_64__)
+# define ROTR(a,n) ({ SHA_LONG64 ret; \
+ asm ("rorq %1,%0" \
+ : "=r"(ret) \
+ : "J"(n),"0"(a) \
+ : "cc"); ret; })
+# define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
+ asm ("bswapq %0" \
+ : "=r"(ret) \
+ : "0"(ret)); ret; })
+# elif (defined(__i386) || defined(__i386__))
+# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
+ unsigned int hi=p[0],lo=p[1]; \
+ asm ("bswapl %0; bswapl %1;" \
+ : "=r"(lo),"=r"(hi) \
+ : "0"(lo),"1"(hi)); \
+ ((SHA_LONG64)hi)<<32|lo; })
+# elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
+# define ROTR(a,n) ({ SHA_LONG64 ret; \
+ asm ("rotrdi %0,%1,%2" \
+ : "=r"(ret) \
+ : "r"(a),"K"(n)); ret; })
+# endif
+#endif
+
+#ifndef PULL64
+#define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
+#define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
+#endif
+
+#ifndef ROTR
+#define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
+#endif
+
+#define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
+#define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
+#define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
+#define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
+
+#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
+#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+
+#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
+/*
+ * This code should give better results on 32-bit CPU with less than
+ * ~24 registers, both size and performance wise...
+ */
+static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
+ {
+ const SHA_LONG64 *W=in;
+ SHA_LONG64 A,E,T;
+ SHA_LONG64 X[9+80],*F;
+ int i;
+
+ while (num--) {
+
+ F = X+80;
+ A = ctx->h[0]; F[1] = ctx->h[1];
+ F[2] = ctx->h[2]; F[3] = ctx->h[3];
+ E = ctx->h[4]; F[5] = ctx->h[5];
+ F[6] = ctx->h[6]; F[7] = ctx->h[7];
+
+ for (i=0;i<16;i++,F--)
+ {
+ T = PULL64(W[i]);
+ F[0] = A;
+ F[4] = E;
+ F[8] = T;
+ T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
+ E = F[3] + T;
+ A = T + Sigma0(A) + Maj(A,F[1],F[2]);
+ }
+
+ for (;i<80;i++,F--)
+ {
+ T = sigma0(F[8+16-1]);
+ T += sigma1(F[8+16-14]);
+ T += F[8+16] + F[8+16-9];
+
+ F[0] = A;
+ F[4] = E;
+ F[8] = T;
+ T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
+ E = F[3] + T;
+ A = T + Sigma0(A) + Maj(A,F[1],F[2]);
+ }
+
+ ctx->h[0] += A; ctx->h[1] += F[1];
+ ctx->h[2] += F[2]; ctx->h[3] += F[3];
+ ctx->h[4] += E; ctx->h[5] += F[5];
+ ctx->h[6] += F[6]; ctx->h[7] += F[7];
+
+ W+=SHA_LBLOCK;
+ }
+ }
+
+#elif defined(OPENSSL_SMALL_FOOTPRINT)
+
+static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
+ {
+ const SHA_LONG64 *W=in;
+ SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
+ SHA_LONG64 X[16];
+ int i;
+
+ while (num--) {
+
+ a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
+ e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
+
+ for (i=0;i<16;i++)
+ {
+#if BYTE_ORDER == BIG_ENDIAN
+ T1 = X[i] = W[i];
+#else
+ T1 = X[i] = PULL64(W[i]);
+#endif
+ T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
+ T2 = Sigma0(a) + Maj(a,b,c);
+ h = g; g = f; f = e; e = d + T1;
+ d = c; c = b; b = a; a = T1 + T2;
+ }
+
+ for (;i<80;i++)
+ {
+ s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
+ s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
+
+ T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
+ T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
+ T2 = Sigma0(a) + Maj(a,b,c);
+ h = g; g = f; f = e; e = d + T1;
+ d = c; c = b; b = a; a = T1 + T2;
+ }
+
+ ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
+ ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
+
+ W+=SHA_LBLOCK;
+ }
+ }
+
+#else
+
+#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
+ T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
+ h = Sigma0(a) + Maj(a,b,c); \
+ d += T1; h += T1; } while (0)
+
+#define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
+ s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
+ s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
+ T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
+ ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
+
+static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
+ {
+ const SHA_LONG64 *W=in;
+ SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
+ SHA_LONG64 X[16];
+ int i;
+
+ while (num--) {
+
+ a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
+ e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
+
+#if BYTE_ORDER == BIG_ENDIAN
+ T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
+ T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
+ T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
+ T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
+ T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
+ T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
+ T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
+ T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
+ T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
+ T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
+ T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
+ T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
+ T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
+ T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
+ T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
+ T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
+#else
+ T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
+ T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
+ T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
+ T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
+ T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
+ T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
+ T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
+ T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
+ T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
+ T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
+ T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
+ T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
+ T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
+ T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
+ T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
+ T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
+#endif
+
+ for (i=16;i<80;i+=16)
+ {
+ ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X);
+ ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X);
+ ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X);
+ ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X);
+ ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X);
+ ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X);
+ ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X);
+ ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X);
+ ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X);
+ ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X);
+ ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X);
+ ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X);
+ ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X);
+ ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X);
+ ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X);
+ ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X);
+ }
+
+ ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
+ ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
+
+ W+=SHA_LBLOCK;
+ }
+ }
+
+#endif
+
+#endif /* SHA512_ASM */
+
+#endif /* !OPENSSL_NO_SHA512 */